Problem J Justified Jungle

Submits: 203
Accepted: at least 17

First solved by: Jagiellonian 1 Jagiellonian University in Krakow (Hlembotskyi, Stokowacki, Zieliński)

00:16:32

Author: Luka Kalinovčić, Ivan Katanić

Problem: Given a tree, find all integers c, such that we can cut a tree into components of size c.

Problem: Given a tree, find all integers c, such that we can cut a tree into components of size c.

Problem: Given a tree, find all integers c , such that we can cut a tree into components of size c.

Problem: Given a tree, find all integers c , such that we can cut a tree into components of size c.

The tree size needs to be divisible by c.
There aren't that many divisors: worst case 240 for $\mathrm{n}=720720$.
We can try each divisor separately.

Problem: Given a tree of size n and integer c , such that $\mathrm{c} \| \mathrm{n}$, can we cut it into components of size c ?

Iterative algorithm:
If $\mathrm{n}=\mathrm{c}$: done.
Otherwise:
Find an edge that divides the tree into subtrees
of sizes c and $\mathrm{n}-\mathrm{c}$.
If there is no such edge: impossible.
Otherwise: Cut the edge and repeat the algorithm on the subtree of size $\mathrm{n}-\mathrm{c}$.

Problem: Given a tree of size n and integer c , such that $\mathrm{c} \mid \mathrm{n}$, can we cut it into components of size c ?

Problem: Given a tree of size n and integer c , such that $\mathrm{c} \| \mathrm{n}$, can we cut it into components of size c ?

Problem: Given a tree of size n and integer c , such that $\mathrm{c} \| \mathrm{n}$, can we cut it into components of size c ?

Problem: Given a tree of size n and integer c , such that $\mathrm{c} \mid \mathrm{n}$, can we cut it into components of size c ?

Problem: Given a tree of size n and integer c , such that $\mathrm{c} \mid \mathrm{n}$, can we cut it into components of size c ?

Problem: Given a tree of size n and integer c , such that $\mathrm{c} \mid \mathrm{n}$, can we cut it into components of size c ?

Problem: Given a tree of size n and integer c , such that $\mathrm{c} \| \mathrm{n}$, can we cut it into components of size c ?

Problem: Given a tree of size n and integer c , such that $\mathrm{c} \| \mathrm{n}$, can we cut it into components of size c ?

Iterative algorithm is difficult to implement in $\mathrm{O}(\mathrm{n})$, and might time out.

Simplified algorithm:
Root the tree and compute the size of each subtree (only once, no need to repeat for each divisor).

Find edges with subtrees sizes equal to a multiple of c. Those are the ones we'll end up cutting.

If the number of found edges is equal to $\mathrm{n} / \mathrm{c}-1$: yes! Otherwise: no!

$c=2$

Found edges:

$3 \neq \mathrm{n} / \mathrm{c}-1 \rightarrow \mathrm{NO}$
$c=3$

Found edges:

$3=n / \mathrm{c}-1 \rightarrow \mathrm{YES}$

Overall complexity: $\mathrm{O}(\mathrm{n} \cdot \sigma(\mathrm{n}))$, where $\sigma(\mathrm{n})$ is the number of divisors of n.
$\mathrm{O}\left(\mathrm{n}+\sigma(\mathrm{n})^{2}\right)$ is possible with an extra insight.

