
Task 4: Grapevine (Grapevine)

Authored by: Teow Hua Jun, Jeffrey Lee

Prepared by: Jeffrey Lee, Leong Eu-Shaun

Introduction

Taking joints as vertices and branches as edges, the Grapevine takes the form of a weighted
undirected tree graph. We will denote the distance between two vertices i and j as di,j .

Subtask 1

Limits: N,Q ≤ 2000

Store the tree in adjacency-list format. We can maintain the tree by simply marking/unmarking
vertices and updating edges for soak and anneal actions respectively. Seek queries can then be
answered by running a depth-first search over the entire tree, for a time of O(N) per query.

Time complexity: O(NQ)

Subtask 2

Limits: For all seek actions, qi = 1

For this subtask, we root the tree at vertex 1. Starting from vertex 1, run a depth-first search
to construct an arbitrary Euler Tour representation sequence of the tree, taking only the first
occurence of each vertex such that every vertex appears exactly once. Note in particular that
when any one vertex is picked, the subtree consisting of itself and all its descendants forms a
contiguous subsequence in this Euler sequence. We can hence maintain an auxillary array S of
the same length, such that wherever the ith element of the Euler sequence is vi, the ith value of
the array S is:

Si =

{
d1,vi , if vertex vi has a grape
d1,vi + 1015, if vertex vi has no grapes

With this array, soak actions become a point update to S at the target vertex, while anneal

NOI 2022 National Olympiad in Informatics—Singapore 11



actions become a range add/subtract to the subtree of the target edge’s lower vertex. Seek
queries are then answered by finding the smallest element of the array S, i.e. the range minimum
over all of S. We can perform all three types of query in O(logN) each using a lazy-propagation
segment tree on S.

Time complexity: O((N +Q) logN)

Subtask 3

Limits: The vine forms a complete binary tree, Ai = ⌊ i+1
2
⌋, Bi = i+ 1

For this subtask, we root the tree at vertex 1. The tree has a depth of O(logN), while each
vertex has up to 2 children.

At each vertex, we initially store the shortest distance from that vertex to any of its marked
(grape) descendants. We find that these stored values can be correctly maintained across any
soak and anneal queries by starting at the target vertex, updating its stored value according to
those of its immediate children, and repeating for its parent until all ancestors have also been
updated.

We can then evaluate seek queries by starting from the query vertex qi and trying the stored
values of all of its ancestors, taking the minimum out of these trials. It is guaranteed that the
shortest distance to a marked vertex will be produced this way: The shortest path between any
two vertices in this graph consists of an ascending path from one vertex to their lowest common
ancestor, followed by a descending path to the other vertex. Thus, each ancestor pi covers the
shortest paths from qi to it entire subtree except in the direction of qi itself, which is instead
covered by pi’s child in that direction.

Each query traverses O(logN) ancestors in O(1) time for a complexity of O(logN) each.

Time complexity: O((N +Q) logN)

Subtask 4

Limits: There is at most 1 grape on the vine at any point in time.

Root the tree arbitrarily and construct an Euler Tour sequence as in Subtask 2. By creating an
auxillary array with Si = droot,vi , we can handle anneal queries and also retrieve droot,v for any
one vertex v in O(logN) each.

The answer to a seek query is the length of the direct path between the query vertex qi and the

NOI 2022 National Olympiad in Informatics—Singapore 12



single marked vertex m. As described in Subtask 3, this path travels from qi towards the root
until it reaches the lowest common ancestor of qi and m, where it then proceeds away from the
root and to m. The distance between qi and m can thus be expressed as:

dqi,m = dqi,lca(qi,m) + dlca(qi,m),m = droot,qi + droot,m − 2droot,lca(qi,m)

We can find the lowest common ancestor of qi and m in O(logN) via binary lifting, allowing
us to evaluate seek queries using the above formula to yield a total O(logN) per query.

Time complexity: O((N +Q) logN)

Subtask 5

Limits: All soak actions will occur before any seek or anneal actions. For all anneal actions,
wi = 0.

Prepare and maintain an Euler Tour sequence + binary lifting structure similarly to the previous
subtask, in order to find the distance between arbitrary pairs of vertices quickly.

Construct a centroid decomposition on the tree, initially storing at each vertex the shortest
distance from the vertex itself to any marked vertex in its covered subtree. We seek to keep
these stored values updated across anneal and soak operations.

Suppose an anneal query is performed on an edge connecting vertices ai ←→ bi, reducing the
distance between them to 0. Without loss of generality, let vertex bi be deeper in the centroid-
hierachy tree than ai. It follows that bi must be a descendant of ai in the hierachy tree; vertex
ai’s covered subtree is bounded only at leaves or by its ancestor centroids, and thus contains bi.
Further, vertex ai is the lowest-order centroid whose covered tree contains the edge ai ←→ bi,
and whose stored value may be affected by the anneal operation.

There are then two possibilities for the stored value in ai after the anneal: either the closest
marked vertex in ai’s covered subtree is now on ai’s side of the edge ai ←→ bi, or is instead on
bi’s side. In the former case, the closest marked vertex to ai is the same as before the anneal,
and no update is necessary to ai’s stored value.

It is the latter which needs to be evaluated to cover both cases. This is equivalent to finding
the closest marked vertex to bi within ai’s subtree, which can in turn be retrieved by using the
stored values of every centroid on the hierachy-tree path from bi to ai. Remember in particular
that the covered subtree of bi extends outwards from the edge, terminating only at leaves and
its centroid ancestors - which in turn cover more of ai’s subtree radiating away from the edge
til their own ancestors. There are O(logN) vertices in the centroid tree path from bi to ai,

NOI 2022 National Olympiad in Informatics—Singapore 13



each evaluated in O(logN) time from using the Euler Tour sequence’s distances, for a total
complexity of O(log2N) to update the lowest affected centroid ai.

The remaining centroids on the path from ai to the hierachal root can be updated using the
same process - higher centroids on ai’s side of the edge are to retrieve stored values from their
descendants on bi’s side, while higher centroids on bi’s side will retrieve from descendants on
ai’s side starting from ai itself. However, centroids after ai can be updated in O(logN) each
by keeping a running prefix minimum for each side, such that when iterating upwards from ai
each centroid need only apply its own stored value to the prefix in order to be accounted for by
all its ancestors.

Soak and seek operations are classic on a centroid decomposition with these stored values, and
can also be done in O(log2N) each.

Time complexity: O(N logN +Q log2N)

Subtask 6

Construct a centroid decomposition on the tree. At every centroid, we will store an Euler Tour
sequence over the centroid’s covering subtree, using the auxillary array value in Subtask 2.
Soak queries can then be applied to the target centroid and its ancestors by performing the
point update to each of their Euler Tour arrays; while anneal queries are applied by starting
from the higher of the edge’s incident centroids, and performing the range add/subtract on its
and its ancestors’ Euler Tour arrays. These take O(logN) per centroid, and O(log2N) in total.

The closest marked vertex in any one centroid’s subtree can then be obtained in O(logN) via
the range minimum, over which seeks can be evaluated in classic pattern in O(log2N).

Time complexity: O(N logN +Q log2N)

NOI 2022 National Olympiad in Informatics—Singapore 14


