Task 4: Grapevine (Grapevine)

Authored by: Teow Hua Jun, Jeffrey Lee
Prepared by: Jeffrey Lee, Leong Eu-Shaun

Introduction

Taking joints as vertices and branches as edges, the Grapevine takes the form of a weighted undirected tree graph. We will denote the distance between two vertices i and j as $d_{i, j}$.

Subtask 1

Limits: $N, Q \leq 2000$
Store the tree in adjacency-list format. We can maintain the tree by simply marking/unmarking vertices and updating edges for soak and anneal actions respectively. Seek queries can then be answered by running a depth-first search over the entire tree, for a time of $O(N)$ per query.

Time complexity: $O(N Q)$

Subtask 2

Limits: For all seek actions, $q_{i}=1$
For this subtask, we root the tree at vertex 1. Starting from vertex 1, run a depth-first search to construct an arbitrary Euler Tour representation sequence of the tree, taking only the first occurence of each vertex such that every vertex appears exactly once. Note in particular that when any one vertex is picked, the subtree consisting of itself and all its descendants forms a contiguous subsequence in this Euler sequence. We can hence maintain an auxillary array S of the same length, such that wherever the $i^{t h}$ element of the Euler sequence is v_{i}, the $i^{\text {th }}$ value of the array S is:

$$
S_{i}= \begin{cases}d_{1, v_{i}}, & \text { if vertex } v_{i} \text { has a grape } \\ d_{1, v_{i}}+10^{15}, & \text { if vertex } v_{i} \text { has no grapes }\end{cases}
$$

With this array, soak actions become a point update to S at the target vertex, while anneal
actions become a range add/subtract to the subtree of the target edge's lower vertex. Seek queries are then answered by finding the smallest element of the array S, i.e. the range minimum over all of S. We can perform all three types of query in $O(\log N)$ each using a lazy-propagation segment tree on S.

Time complexity: $O((N+Q) \log N)$

Subtask 3

Limits: The vine forms a complete binary tree, $A_{i}=\left\lfloor\frac{i+1}{2}\right\rfloor, B_{i}=i+1$
For this subtask, we root the tree at vertex 1 . The tree has a depth of $O(\log N)$, while each vertex has up to 2 children.

At each vertex, we initially store the shortest distance from that vertex to any of its marked (grape) descendants. We find that these stored values can be correctly maintained across any soak and anneal queries by starting at the target vertex, updating its stored value according to those of its immediate children, and repeating for its parent until all ancestors have also been updated.

We can then evaluate seek queries by starting from the query vertex q_{i} and trying the stored values of all of its ancestors, taking the minimum out of these trials. It is guaranteed that the shortest distance to a marked vertex will be produced this way: The shortest path between any two vertices in this graph consists of an ascending path from one vertex to their lowest common ancestor, followed by a descending path to the other vertex. Thus, each ancestor p_{i} covers the shortest paths from q_{i} to it entire subtree except in the direction of q_{i} itself, which is instead covered by p_{i} 's child in that direction.

Each query traverses $O(\log N)$ ancestors in $O(1)$ time for a complexity of $O(\log N)$ each.
Time complexity: $O((N+Q) \log N)$

Subtask 4

Limits: There is at most 1 grape on the vine at any point in time.
Root the tree arbitrarily and construct an Euler Tour sequence as in Subtask 2. By creating an auxillary array with $S_{i}=d_{\text {root }, v_{i}}$, we can handle anneal queries and also retrieve $d_{\text {root }, v}$ for any one vertex v in $O(\log N)$ each.

The answer to a seek query is the length of the direct path between the query vertex q_{i} and the
single marked vertex m. As described in Subtask 3, this path travels from q_{i} towards the root until it reaches the lowest common ancestor of q_{i} and m, where it then proceeds away from the root and to m. The distance between q_{i} and m can thus be expressed as:

$$
d_{q_{i}, m}=d_{q_{i}, \operatorname{lca}\left(q_{i}, m\right)}+d_{\operatorname{lca}\left(q_{i}, m\right), m}=d_{\mathrm{root}, q_{i}}+d_{\mathrm{root}, m}-2 d_{\mathrm{root}, \operatorname{lea}\left(q_{i}, m\right)}
$$

We can find the lowest common ancestor of q_{i} and m in $O(\log N)$ via binary lifting, allowing us to evaluate seek queries using the above formula to yield a total $O(\log N)$ per query.

Time complexity: $O((N+Q) \log N)$

Subtask 5

Limits: All soak actions will occur before any seek or anneal actions. For all anneal actions, $w_{i}=0$.

Prepare and maintain an Euler Tour sequence + binary lifting structure similarly to the previous subtask, in order to find the distance between arbitrary pairs of vertices quickly.

Construct a centroid decomposition on the tree, initially storing at each vertex the shortest distance from the vertex itself to any marked vertex in its covered subtree. We seek to keep these stored values updated across anneal and soak operations.

Suppose an anneal query is performed on an edge connecting vertices $a_{i} \longleftrightarrow b_{i}$, reducing the distance between them to 0 . Without loss of generality, let vertex b_{i} be deeper in the centroidhierachy tree than a_{i}. It follows that b_{i} must be a descendant of a_{i} in the hierachy tree; vertex a_{i} 's covered subtree is bounded only at leaves or by its ancestor centroids, and thus contains b_{i}. Further, vertex a_{i} is the lowest-order centroid whose covered tree contains the edge $a_{i} \longleftrightarrow b_{i}$, and whose stored value may be affected by the anneal operation.

There are then two possibilities for the stored value in a_{i} after the anneal: either the closest marked vertex in a_{i} 's covered subtree is now on a_{i} 's side of the edge $a_{i} \longleftrightarrow b_{i}$, or is instead on b_{i} 's side. In the former case, the closest marked vertex to a_{i} is the same as before the anneal, and no update is necessary to a_{i} 's stored value.

It is the latter which needs to be evaluated to cover both cases. This is equivalent to finding the closest marked vertex to b_{i} within a_{i} 's subtree, which can in turn be retrieved by using the stored values of every centroid on the hierachy-tree path from b_{i} to a_{i}. Remember in particular that the covered subtree of b_{i} extends outwards from the edge, terminating only at leaves and its centroid ancestors - which in turn cover more of a_{i} 's subtree radiating away from the edge til their own ancestors. There are $O(\log N)$ vertices in the centroid tree path from b_{i} to a_{i},
each evaluated in $O(\log N)$ time from using the Euler Tour sequence's distances, for a total complexity of $O\left(\log ^{2} N\right)$ to update the lowest affected centroid a_{i}.

The remaining centroids on the path from a_{i} to the hierachal root can be updated using the same process - higher centroids on a_{i} 's side of the edge are to retrieve stored values from their descendants on b_{i} 's side, while higher centroids on b_{i} 's side will retrieve from descendants on a_{i} 's side starting from a_{i} itself. However, centroids after a_{i} can be updated in $O(\log N)$ each by keeping a running prefix minimum for each side, such that when iterating upwards from a_{i} each centroid need only apply its own stored value to the prefix in order to be accounted for by all its ancestors.

Soak and seek operations are classic on a centroid decomposition with these stored values, and can also be done in $O\left(\log ^{2} N\right)$ each.

Time complexity: $O\left(N \log N+Q \log ^{2} N\right)$

Subtask 6

Construct a centroid decomposition on the tree. At every centroid, we will store an Euler Tour sequence over the centroid's covering subtree, using the auxillary array value in Subtask 2. Soak queries can then be applied to the target centroid and its ancestors by performing the point update to each of their Euler Tour arrays; while anneal queries are applied by starting from the higher of the edge's incident centroids, and performing the range add/subtract on its and its ancestors' Euler Tour arrays. These take $O(\log N)$ per centroid, and $O\left(\log ^{2} N\right)$ in total.

The closest marked vertex in any one centroid's subtree can then be obtained in $O(\log N)$ via the range minimum, over which seeks can be evaluated in classic pattern in $O\left(\log ^{2} N\right)$.

Time complexity: $O\left(N \log N+Q \log ^{2} N\right)$

