
BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: passes

Spoiler

Boarding Passes (passes)
by magnus hegdahl (norway)

In this task we want to calculate the expected number of times someone passes someone else while
boarding according to given boarding groups.

Subtask 1. 𝐺 = 1

In this subtask there is only one boarding group. Accordingly, we only want to find the expected
number of passes for 𝑁 people boarding in a uniformly random order.
Assume we have 𝑘 people all boarding from the same entrance. Let 𝑎, 𝑏 be two of these 𝑘 people
with 𝑎 sitting closer to the entrance. They pass each other if and only if 𝑏 boards before 𝑎. The
probability of this happening is 0.5, since there are exactly as many permutations where 𝑎 boards
before 𝑏 as there are permutations with 𝑏 boarding before 𝑎. There are ∑𝑘−1𝑖=0 𝑖 =

𝑘(𝑘−1)
2 pairs of people

each contributing 0.5 to the expected number of passes, for a total of 𝑘(𝑘−1)4 .
We now want to decide how to assign all 𝑁 people to the front and back entrances. It is always optimal
to choose non-overlapping groups, i.e. we want to find 𝑘1 and 𝑘2 = 𝑁 − 𝑘1, where the passengers on
the first 𝑘1 seats are assigned to the front entrance, and the remaining 𝑘2 passengers are assigned
to the back entrance, such that the total number of passes is minimal. It is fast enough to find the
optimal 𝑘1 by linear search, but one may also observe that it is optimal to split in the middle, i.e.
𝑘1 = ⌈

𝑁
2 ⌉ and 𝑘2 = ⌊

𝑁
2 ⌋. The total number of passes is

𝑘1(𝑘1−1)+𝑘2(𝑘2−1)
4 .

Subtask 2. 𝐺 ≤ 7, 𝑁 ≤ 100

Now we need to find the optimal order of boarding groups. Since 𝐺 ≤ 7, it is possible to enumerate all
possible orders of boarding groups. We will now consider a fixed order of boarding groups.
For each passenger, the expected number of people they pass while boarding from the front and when
boarding from the back can be calculated: For each passenger sitting between the current passenger’s
seat and the entrance, there is 1 expected pass if the other passenger is in an earlier boarding group,
or 0.5 if they are in the same group, and 0 otherwise. This can be calculated for all passengers in
𝑂(𝑁2), which is fast enough for this subtask. It can also be sped up to 𝑂(𝑁𝐺) by computing prefix sums.
Each passenger is then assigned to the entrance where the expected number of passes is lower.

Subtask 3. 𝐺 ≤ 10, 𝑁 ≤ 10000

In this subtask, 𝐺 ≤ 10. Enumerating all 𝐺! ≤ 3 628800 possible orders could still be possible, but
would not leave enough time to calculate the expected number of passes for each order. Instead, a
dynamic programming approach is necessary: Consider all 2𝐺 ≤ 1024 subsets of the set of all boarding
groups. For each subset, calculate the minimal expected number of passes to board only these groups.
This can be calculated as:

dp(𝑆) = min
𝑔∈𝑆

dp(𝑆 \ {𝑔}) + number of passes while 𝑔 boards after 𝑆 \ {𝑔} is seated

To calculate dp(𝑆), first calculate the following values for all positions in 𝑂(𝑁):

1/2

BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 2
Task: passes

Spoiler

• How many passengers sitting in front of / behind the current position are part of the same
boarding group as the passenger on the current position?

• How many passengers sitting in front of / behind the current position are part of any boarding
group 𝑔 with 𝑔 ∈ 𝑆?

These prefix sums allow us to query in 𝑂(1) how many expected passes will be made while a given
passenger boards, assuming that all other boarding groups in 𝑆 have already boarded. Iterate through
all groups 𝑔 ∈ 𝑆 and all passengers in group 𝑔 to find out whether each passenger should board from
the front or back entrance, and which group should board last to minimize the expected number of
passes.
To calculate this for all groups 𝑔 ∈ 𝑆 and all subsets 𝑆, we need a running time of 𝑂(2𝐺𝑁), which is
sufficient to solve subtask 3. Slightly less efficient solutions in 𝑂(2𝐺𝑁𝐺) are also accepted.

Subtask 4. No further constraints.

This subtask requires that we reduce the time needed to calculate the expected number of passes
while boarding a group 𝑔, with a given set of groups already boarded.
For any group 𝑔, there is a 𝑘∗ such that in the optimal solution, the first 𝑘∗ passengers of group 𝑔
board from the front entrance, and the remaining passengers from the back entrance. Let 𝑝(𝐾) be
the number of passes if the first 𝑘 passengers board from the front, and the remaining passengers
from the back. The function has a minimum at 𝑘∗ and is strictly decreasing before the minimum and
strictly increasing after.* We can thus use ternary search to find an optimal 𝑘.
To calculate 𝑝(𝑘) for a given 𝑘 quickly, we precalculate for all groups 𝑔1, 𝑔2 and all 1 ≤ 𝑖 ≤ |𝑔2|:

• How often is a seat belonging to 𝑔1 passed while the first 𝑖 passengers of group 𝑔2 board,
assuming they use the front entrance?

• How often is a seat belonging to 𝑔1 passed while the last 𝑖 passengers of group 𝑔2 board,
assuming they use the back entrance?

We can now calculate 𝑝(𝑘) in 𝑂(𝐺).
This precalculation can be done in 𝑂(|𝑔1|) for any pair of groups 𝑔1, 𝑔2. Thus, to do the precalculation
for all pairs of groups, we need time 𝑂(𝐺∑𝐺𝑖=1(𝑔𝑖)) = 𝑂(𝐺𝑁). The ternary search is done for each group
in each subset of all groups, i.e. 𝑂(2𝐺𝐺) times. The total running time is thus 𝑂(2𝐺𝐺2 + 𝐺𝑁).

* In some cases there are two values where the minimum is reached.

2/2

