

XorSum

-editorial-
Author: Tudor Costin \& Oncescu Costin
Preparation: Tudor Costin
Task: $\operatorname{Xor}(1<=i<=j<=n)(a[i]+a[j])$
7 points : $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$: Brute
11 points: $\mathrm{O}\left(\operatorname{Vmax}^{\wedge} 2\right)$: For every value x we count the number of its occurrences $(\operatorname{ap}[\mathrm{x}])$ in the given array. Now we take two values $\mathrm{a}<=\mathrm{b}$ and we will have two cases :

- if $\mathrm{a}<\mathrm{b}$ and every value occurs an odd number of times our answer will be updated with ($a+b$)
- if $\mathrm{a}=\mathrm{b}$ the number of pairs $(1<=\mathrm{p}<=\mathrm{q}<=\mathrm{n}$ and $\operatorname{val}[\mathrm{p}]=\operatorname{val}[\mathrm{q}]=\mathrm{a})$ will be $1+2+$ $\ldots+a p[a]$. If this number is odd the answer will be updated with $(a+b)$

32 points : $\mathrm{O}(\mathrm{Vmax} * \log V \max)$: FFT
27 points : $\mathrm{O}(\mathrm{N} * \log \mathrm{~N} * \log \mathrm{Vmax})$: We will fix a bit, let call it B . We will get an array x i.e. $x[i]=\operatorname{val}[i] \% 2^{B+1}$. We will sort this array x. If we get two values $x[p]$ and $x[q]$, there will be 4 cases, more precisely, $(x[p]+x[q])$ will belong to an interval amongst the following ones : $I_{1}=$ $\left[0 \ldots 2^{\mathrm{B}}-1\right], \mathrm{I}_{2}=\left[2^{\mathrm{B}} \ldots 2 * 2^{\mathrm{B}}-1\right], \mathrm{I}_{3}=\left[2 * 2^{\mathrm{B}} \ldots 3 * 2^{\mathrm{B}}-1\right], \mathrm{I}_{4}=\left[3 * 2^{\mathrm{B}} \ldots 4 * 2^{\mathrm{B}}-1\right]$. If the sum is in the second or in the fourth, the sum contains the bit B. For every $x[p o s]$ we will use binary search to find three indices $\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3$, meaning that $\quad 1<=\mathrm{i}<\mathrm{p} 1, \mathrm{x}[\mathrm{i}]+\mathrm{x}[\mathrm{pos}] \in \mathrm{I}_{1}$; $\mathrm{p} 1<=\mathrm{i}<\mathrm{p} 2 \mathrm{x}[\mathrm{i}]+\mathrm{x}[\mathrm{pos}] \epsilon \mathrm{I}_{2} ; \mathrm{p} 2<=\mathrm{i}<\mathrm{p} 3 \mathrm{x}[\mathrm{i}]+\mathrm{x}[\mathrm{pos}] \epsilon \mathrm{I}_{3}$ and $\mathrm{p} 3<=\mathrm{i}<=\mathrm{nx}[\mathrm{i}]+\mathrm{x}[\mathrm{pos}] \epsilon$ I_{4}. If $\mathrm{p} 2-\mathrm{p} 1+\mathrm{n}+1-\mathrm{p} 3$ is odd we will update the answer with 2^{B}.

23 points : $\mathrm{O}\left(\mathrm{N}^{*} \log V m a x\right)$: It is the same idea like the previos one. The two essential observations are :

1. If we are at a bit $B+1$, we can pass easily at bit B. This step involves that $x[i]<2^{B+2}$ We will split x in two parts. For every $1<=\mathrm{i}<=\mathrm{K}, \mathrm{x}[\mathrm{i}]<2^{\mathrm{B}+1}$ and if $\mathrm{K}<\mathrm{i}<=\mathrm{n}$, $\mathrm{x}[\mathrm{i}]>=2^{\mathrm{B}+1}$. We will decrease every $\mathrm{x}[\mathrm{i}]>=2^{\mathrm{B}+1}$ by $2^{\mathrm{B}+1}$. These two parts are now sorted and we will merge them in $O(n)$, resulting necessary x.
2. Now, for every position pos, we will update indices $\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3$ advancing them from pos - 1 (two pointers trick).
