《机器》解题报告

题目大意

给定一张有向图 G (n 个点 m 条边),每个点有一个势能 h_x ,有 p_x 个人管道,和 q_x 个出管道,每个人/出管道最多只能通过一个电子,若在图 G 中能从 x 经过若干条边到达 y,则一个电子可以从第 x 个点的第 i 根入管道进入,从第 y 个点的第 j 根管道通出,代价为 $h_x - h_y - a_{x,i} - b_{y,j}$ 。最大化总代价。

数据范围

 $1 \le u_i, v_i \le n$

 $0 \leq m, p_i, q_i, a_{i,j}, b_{i,j}, h_i$

其中 $a_{i,j}, b_{i,j}, h_i$ 均在对应范围内等概率随机,其余均以某种方式随机生成,不会针对性卡 spfa 等算法。

本题共25个测试点,每个测试点4分。

测试点编	$n \leq$	$m \leq$	$p_i, q_i \leq$	$a_{i,j}, b_{i,j} \leq$	$h_i \leq$	特殊性质
号						
1,2	50	200	10	10	30	
3,4	70	300	100	100	2000	
5,6,7,8	100	500	200	200	10^{4}	
9,10	2000	5000	500	10^{4}	10^{6}	A
11,12,13,14	2000	n-1	500	10^{4}	10^{6}	В
15,16,17,18	2000	10000	500	10^4	10^{6}	С
19,20,21	700	5000	1000	10^{6}	10^{8}	
22,23,24,25	2000	20000	2000	10^{6}	10^{8}	

特殊性质 A: $|u_i - v_i| = 1$

特殊性质 B: $m = n - 1, u_i < v_i, v_i = i + 1$

特殊性质 C: $\min\{u_i, v_i\} \leq 4$

解题过程

算法一

按照题意建图跑费用流,期望得分8~16分。

算法二

注意到对于每个点代价大的出/入边不会在代价小的出/入边之前被流满,所以可以将代价排序,然后先放代价小的边,做费用流时若该边满流再把代价大的边加进去。

这样可以加速费用流。期望得分32分。

算法三

对于特殊性质 A,发现可以把强连通分量缩点,然后变成了一个经典的老鼠进洞问题,可以采用 dp/维护凸包/线段树模拟费用流/用堆支持反悔操作等方法来做。这里不展开

期望得分8分。

算法四

对于特殊性质 B, 可以用树剖/LCT 等方法模拟费用流,也可以维护凸包。

期望得分16分。

算法五

对于特殊性质 C, 可以用堆维护前四个点的转移来模拟费用流。

期望得分16分。

算法六

考虑其线性规划形式:

$$\max \sum_{i} \left(\sum_{j} \alpha_{i,j} - \sum_{j} \beta_{i,j} \right) h_{i} - \sum_{i} \sum_{j} a_{i,j} \alpha_{i,j} - \sum_{i} \sum_{j} b_{i,j} \beta_{i,j}$$
$$\sum_{j} \alpha_{u,j} - \sum_{j} \beta_{u,j} + \sum_{(v,u) \in E} f_{v,u} - \sum_{(u,v) \in E} f_{u,v} = 0 (u \in V)$$

$$\alpha_{i,j} \le 1, \beta_{i,j} \le 1$$

$$\alpha_{i,j}, \beta_{i,j}, f_{u,v} \ge 0$$

对于每个 u 构造出无穷多个常量 $E_{i,j}, \hat{E}_{i,j} \leq 0$

并令
$$t_i = \sum_j \alpha_{i,j} - \sum_j \beta_{i,j}$$

可将线性规划改写为:

$$\min - \sum_{i} t_{i} h_{i} + \sum_{i,j} \max(E_{i,j} + t_{i}, 0) + \sum_{i,j} \max(\hat{E}_{i,j} - t_{i}, 0)$$
$$t_{u} + \sum_{(v,u)\in E} f_{v,u} - \sum_{(u,v)\in E} f_{u,v} = 0 (u \in V)$$
$$f_{u,v} \ge 0$$

用约束代掉 max:

$$\min - \sum_{i} t_{i} h_{i} + \sum_{i,j} s_{i,j} + \sum_{i,j} \hat{s}_{i,j}$$

$$s_{i,j} - t_{i} \ge E_{i,j}$$

$$\hat{s}_{i,j} + t_{i} \ge \hat{E}_{i,j}$$

$$t_{u} + \sum_{(v,u)\in E} f_{v,u} - \sum_{(u,v)\in E} f_{u,v} = 0 (u \in V)$$

$$f_{u,v}, s_{i,j}, \hat{s}_{i,j} \ge 0$$

然后进行线性规划对偶:

$$\max \sum_{i,j} r_{i,j} E_{i,j} + \hat{r}_{i,j} \hat{E}_{i,j}$$

$$r_{i,j} \le 1$$

$$-\sum_{i,j} r_{i,j} + \sum_{i,j} \hat{r}_{i,j} + e_i = -h_i$$

$$e_v - e_u \ge 0((u, v) \in E)$$

$$r_{i,j}, \hat{r}_{i,j} \ge 0$$

 $z_i = -e_i$ 再整理一下:

$$\min - \sum_{i,j} r_{i,j} E_{i,j} - \hat{r}_{i,j} \hat{E}_{i,j}$$
$$0 \le r_{i,j} \le 1$$
$$0 \le \hat{r}_{i,j} \le 1$$
$$\sum_{i,j} \hat{r}_{i,j} - \sum_{i,j} r_{i,j} = z_i - h_i$$
$$z_u \le z_v((u, v) \in E)$$

然后用类似之前的方法,对于每个 i,当 $\sum_j \hat{r}_{i,j} - \sum_j r_{i,j}$ 确定的时候构造一个函数把它的最优值算出来,设这个函数为 G_i 。那么改写之前的线性规划:

$$\min \sum_{i} G_i(z_i - h_i)$$
$$z_u \le z_v((u, v) \in E)$$

重新观察这个式子,发现是一个类似保序回归的问题。

注意到 G_i 是一个 0 点为最小值的凸函数,且在对于任意整数 t,在区间 (t,t+1) 中均为一次函数。

所以容易证明一定存在一组最优解 z 使得所有成员都是整数。

定义 1: z 向 $\{a,b\}(a \le b)$ 取整,表示将 z 中的元素大于 b 的变成 b,小于 a 的变成 a **定义 2**: 集合 U 的均值区间:满足 $\sum_{i \in U} G_i(k-h_i)$ 最小的 k 的取值区间(通过导数易证该范围一定是一段区间)

引理 1: 对于 a < b,任意 $h_i \not\in (a,b)$,若 z^S 为原问题加入条件 $z_i^S \in \{a,b\}$ 后的一组最优解,则一定存在一组最优解 z 使得其向 $\{a,b\}$ 取整后为 z^S

proof. 反证法,不妨假设原问题的最优解 z' 必有 $z'_i \le a$ 且 $z^S = b$ 设 $x = \{z'_i | z'_i \le a, z^S_i = b\}, U = \{i | z'_i = x, z^S_i = b\}$ 。

若 l > a, 将 U 中 z'_i 改成 $\min(l,b)$ 后不劣。

若 $l \le a, r \ge b$, 将 U 中 z'_i 改成 b 后不劣。

若 $l \le a, r < a$, 将 $U + z_i^S$ 改成 a 不劣。

若 l < a, r < b:

若 $U = \{i | z_i' \le a, z_i^S = b\}$, 全部改成 a 不劣。

否则设 $y = max\{z_i'|z_i' < x, z_i^S = b\}, U' = \{i|z_i' = y, z_i^S = b\},$ 其均值区间为 [l', r']

若 $r' \leq x$, 将 $f_i^S(i \in U \cup U')$ 改成 a 不劣。

若 r' > x,则将 $z'_i (i \in U')$ 改成 x 不劣。

重复上述过程即可找到矛盾。

根据引理 1,我们可以用类似整体二分的方法(详见参考文献 [1]4.5 节)将其转化为一般 图最大带权独立集问题,可以采用 dinic/ISAP 等最大流算法解决。

复杂度 $O(\max flow(|V|, |E|) \lg h_i)$ 期望得分 100 分。

其他思考一

或许使用 cost scaling 等高级费用流算法可以拿更多分。

其他思考二

或许存在使用模拟退火等随机算法的高效方法。

其他思考三

线性规划对偶之后针对特殊数据可以进行模拟,或许有更高效的方法。

其他思考四

是否存在更一般的费用流模型能通过类似方法转化?

参考资料

- [1] 高睿泉、《浅谈保序回归问题》,2018 年集训队论文
- [2] 丁晓漫、《再探线性规划对偶在信息学竞赛中的应用》,2021 年集训队论文
- [3] 董克凡、《浅谈线性规划与对偶问题》,2016 年集训队论文