
European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

Problem E. Longest Unfriendly Subsequence

Author: Anton Trygub
Developer: Anton Trygub

Editorialist: Anton Trygub

Subtask 1. Any subsequence of such a sequence is nondecreasing. Unfriendly sequences, however, do not
allow equality of two adjacent elements, so any unfriendly subsequence of this sequence has to be strictly
increasing. This means, that each value will appear in such a subsequence at most once.

But then we can delete duplicates and take a subsequence containing precisely one occurrence of each
element that appears in a. As all elements of this subsequence are distinct, it’s unfriendly. So, the answer
for this subtask is just the number of distinct elements in a. We can find it in O(n).

Subtask 2. We can just consider all possible 2n − 1 nonempty subsequences of a, check each for
unfriendliness in O(n) time, and output the length of the longest unfriendly. This takes O(2nn) time.
As t ≤ 105, this easily fits in TL for n ≤ 8.

Subtask 3. Clearly, for n = 1 answer is 1, and for n ≥ 2 it’s ≥ 2 (as any subsequence of length exactly
2 is unfriendly).

Let’s use dynamic programming. Let dp[i][j] for 1 ≤ i < j ≤ n denote the length of the longest unfriendly
subsequence of a, in which the last element is aj , and the second last is ai. If ai = aj , dp[i][j] = 0.
Otherwise, dp[i][j] = max(2,max1≤k<idp[k][i] + 1)) over k for which ak 6= ai and ak 6= aj . We can
calculate this dp table in O(n3) for a single test case, which is fast enough.

Subtask 4. Let’s look at any unfriendly sequence b1, b2, . . . , bm such that for all i 1 ≤ bi ≤ 3.
Each 3 consecutive elements of b are distinct, therefore bi, bi+1, bi+2 are some permutation of 1, 2, 3 for
1 ≤ i ≤ n− 2. Then, however, bi+1, bi+2, bi+3 also are such a permutation. As bi and bi+3 both differ from
two distinct values (bi+1, bi+2), they must be equal. So, bi = bi+3 for each i; b has to be periodic with
period 3.

Then, just try each possible start of the subsequence b p1, p2, p3 — every permutation of (1, 2, 3). For
each of them, take elements p1, p2, p3, p1, p2, . . . as soon as you see them. Output the largest answer over
these 6 options.

Subtask 5. Let’s go through our sequence a from left to right and keep the following dynamic
programming table: let dp[x][y] denote the length of the longest unfriendly subsequence of a up to this
moment, whose last element is y, and second last element is x. Initially, we can set each value in this
table to −INF (where INF = 109, for example). Let’s also keep track of what elements have already
appeared in our sequence.

It turns out that it’s easy to update this table: when we are at position i, we just need to update the
values of dp[x][ai] for each x 6= ai. If x hasn’t appeared before, there is no subsequence ending with (x, ai),
otherwise, do dp[x][ai] = max(dp[x][ai], 2). Then, we need to do dp[x][ai] = max(dp[x][ai], dp[y][x]+1) over
all y 6= x, ai. Updating this table after seeing the next element takes O(MAX2), with overall complexity
O(MAX2n) per test case, which fits easily.

Subtask 6. Let’s modify our algorithm from Subtask 5 a little. Clearly, we can assume that elements
are in the range [1, n] (just map k-th smallest value to k, we don’t care about the exact values of elements,
we only care about which elements are equal to which). Now, again, let’s keep dp[x][y] for x 6= y: the
length of the longest unfriendly subsequence of a up to this moment which ends with (x, y). The difficulty
lies in updating dp[x][ai] = max(dp[x][ai], dp[y][x] + 1) over all y 6= x, ai: this can take O(n3), which for
n = 10000 has no chance of passing.

But let’s note that we don’t actually need all the values dp[y][x] to update this table. We need the largest
value among the ones for which y 6= ai. Then, for each y let’s keep two values x1 6= y, x2 6= y, such that
the values dp[x1][y], dp[x2][y] are the largest among all dp[x][y]. Then, we would just have 2 (at most)
candidates to check. After we do this for each y, we will recalculate the best choices for the previous
element for ai.

Page 8 of 12



European Junior Olympiad in Informatics 2022
Ukraine (online), 19-25 September 2022

This way, processing new element takes O(n), and the entire algorithm runs in O(n2) time, which passes
easily.

Subtask 7. For this subtask, we will have to analyze the structure of the longest unfriendly subsequence
a bit more.

Consider the longest unfriendly subsequence of a. Suppose that it contains ai. What could be the previous
element before ai, if there is any? Clearly, if it’s some value x, it’s optimal to take the last occurrence of
x before ai.

What we did in previous subtasks was going through all possible candidates for x. However, as it turns
out, we don’t need that many. Among all last occurrences of elements before ai, consider 5 rightmost (if
there are at least 5). Suppose that we don’t take any of those as our x. Then, I claim, we can extend our
unfriendly subsequence by inserting one of these rightmost 5 last occurrences into it.

Indeed, two (or less, if there are less than two) elements to the left of ai in this subsequence, ai, and the
element to the right, if there is any. They are the only prohibited values for the x (if we want to insert x
right before ai in this subsequence). Then one of those 5 last occurrences would not be prohibited, and
the subsequence wouldn’t be the longest possible.

So, for each ai, we know the set of at most 5 possible candidates for the previous element in the longest
unfriendly subsequence. Therefore, we can once again use dynamic programming of form [cand][last],
indicating the length of the longest possible unfriendly subsequence, ending in (acand, alast). For each
last, we have at most 5 cand. So, when processing new last, we need to do just MAGIC2 checks (where
MAGIC = 5).

We can keep this dp in maps, and keep the last occurrence of each element with a simple set. The total
complexity is O(n(52 + log n)).

Page 9 of 12


