
EJOI Day 1

Task Particles (English)

Task Magic Page 1 of 2

Analysis

In order to be able to solve the problem we have to learn to find the exact moment in which

two particles collide. Let us try to find the moment in which the i-th x particle and the j-th y

particle collide. We can do that quite easily using a binary search on the moment of collision,

but that would have a complexity of 𝑂(𝑙𝑜𝑔). To find the moment of collision in 𝑂(1) let us

look at the formulas that describe the position of a certain particle in a specific moment. Let

us imagine that the x particles are being shot from point 0 rightwards on the number line, and

the y particles are being shot from point L leftwards on the number line. At a certain moment

t, the position of the two particles is:

𝑃𝑥𝑖 = (𝑡 − 𝑡𝑥𝑖) × 𝑣𝑥𝑖

𝑃𝑦𝑗 = 𝐿 − (𝑡 − 𝑡𝑦𝑗) × 𝑣𝑦𝑗

This formula could give negative values if we evaluate it for invalid times in which the

particle has not been shot yet, but that does not matter. We clearly have a collision if 𝑃𝑥𝑖 =

𝑃𝑦𝑗. That is:

(𝑡 − 𝑡𝑥𝑖) × 𝑣𝑥𝑖 = 𝐿 − (𝑡 − 𝑡𝑦𝑗) × 𝑣𝑦𝑗

𝑡 × 𝑣𝑥𝑖 − 𝑡𝑥𝑖 × 𝑣𝑥𝑖 = 𝐿 − 𝑡 × 𝑣𝑦𝑗 + 𝑡𝑦𝑗 × 𝑣𝑦𝑗

𝑡 × 𝑣𝑥𝑖 + 𝑡 × 𝑣𝑦𝑗 = 𝐿 + 𝑡𝑦𝑗 × 𝑣𝑦𝑗 + 𝑡𝑥𝑖 × 𝑣𝑥𝑖

𝑡 =
𝐿 − 𝑡𝑦𝑗 × 𝑣𝑦𝑗 + 𝑡𝑥𝑖 × 𝑣𝑥𝑖

𝑣𝑥𝑖 + 𝑣𝑦𝑗

And hence we get a direct formula for the moment of collision. It is possible for the collision

to happen before 0 or after L on the number line, which means that this collision will surely

not happen (those particles will collide with some others before colliding with each other).

Solution with complexity 𝑶(𝑵𝟐 × 𝒍𝒐𝒈𝑵)

Since we can quickly find the moment of collision between two particles, we can find the

moment of collision for every pair of particles and order these collisions chronologically. The

total amount of collisions is 𝑂(𝑁2), and sorting them takes 𝑂(𝑁2 × 𝑙𝑜𝑔𝑁). After this we can

iterate over all collisions chronologically and keep which of the particles have already

collided. If we reach a pair in which both particles have not collided with anything yet, then

we know that they will collide with each other. In this way we can find not only the first K,

but all collisions with the same complexity.

Solution with complexity 𝑶(𝑵 × 𝑲 × 𝒍𝒐𝒈)

We will describe a solution that finds only the first collision. After finding it we can remove

the two particles that collided and repeat the whole process K times.

To find the first collision we will use binary search on the moment of the first collision. Let us

fix the time t. We want to know whether the first collision happened before or after t. To do

this we can find the furthest x particle and the furthest y particle (by ‘furthest’ we mean the

EJOI Day 1

Task Particles (English)

Task Magic Page 2 of 2

one that travelled the largest distance, that is, using the formulas above, the x particle with the

largest position and the y particle with the smallest one). Let the positions of the two particles,

according to the formulas above, be respectively 𝑃𝑥 and 𝑃𝑦. Then:

- If |𝑃𝑥 − 𝑃𝑦| < 𝜀 (where 𝜀 is a small enough constant) we can assume that t is the

moment of the first collision. The particles which collided are the furthest particles..

Else:

- If 𝑃𝑥 < 𝑃𝑦 , then the first collision has not happened yet and we have to look for a

larger value of t

- If 𝑃𝑥 > 𝑃𝑦 , then the first collision already happened and we have to look for a smaller

value of t

This solution has a complexity of 𝑂(𝑁 × 𝑙𝑜𝑔) for finding the first collision. The bounds of

the binary search in which we search for t are from 0 to the time needed for any particle to be

shot and travel a distance of L (since at this moment the particle must have collided with some

other one).

Since we are doing a binary search on real values and not integers, it is a good idea to set a

limit on the amount of iterations the binary search can perform, since choosing a good 𝜀 may

be tricky. About 40-50 iterations should be ideal (more may trigger time limits and less could

lead to precision errors).

Using this procedure K times we get a solution with total complexity of 𝑂(𝑁 × 𝐾 × 𝑙𝑜𝑔).

The problem can be solved in 𝑂(𝑁 × 𝐾), but this was not required.

