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Analysis 

1 Introduction 
The problem statement in short is: 

We have a tree in which every vertex has a weight. We want to decompose the tree into vertical 

chains, such that every vertex belongs to exactly one chain and the sum of “values” of the chains is 

maximum. The value of a chain is defined as  Wmax −Wmin , where Wmax is the maximal weight of a 

vertex in the chain and а Wmin is the minimal weight. 

We want our solution to be O(N log N) or O(N) in time, where N is the number of vertices in the 

tree. 

2 Observations 
To solve the problem we first need to make some observations. The most important one is that at 

least one of the following is true for every chain: 

• The chain should start from the vertex with the largest weight and finish on the vertex with 
the smallest weight from this path.  

• The chain should start from the vertex with the smallest weight and finish on the vertex with 

the largest weight from this path.  

This is true, because if we have a path not satisfying one of the above conditions we can divide 

this path into several smaller ones without decreasing the initial value.  

The second observation is that there exists an optimal decomposition into chains such that the 

weights of the vertices in each chain are either increasing or decreasing. This observation is again 

true because if there was a chain not satisfying this, we could have divided it into several smaller 

ones without decreasing its initial values. 

3 Main part 
Using the above observations we can solve the problem in linear time. The author’s solution uses 

only the first observation. Also there exists a solution which is easier to be implemented but it uses 

both observations. Both solutions are linear in time. 

To get partial points one could have implemented a brute force for 10 points. To get 40 points one 

could implement a solution quadratic in time. 
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3.1 Solution for 40 points  

We will solve the problem with dynamic programming. 

Our state will be dpu which is the maximal sum of values of chains in a decomposition of the subtree 

rooted at vertex u. We know that there is a chain starting at vertex u and finishing in a vertex 

in its subtree. Lets denote this vertex as v and the set of vertices which belong to the path 

from u to v as S. Also lets denote by Ci  the sum of the dp values of the children of u (Ci 

=∑x∈children(i) dpx). From here we get that for the chain starting at u and finishing at v, the value 

of dpu will be ∑ x∈S Cx - ∑x∈S / {u}  dpx + maxx∈S  wx - minx∈S wx . And so we can find dpu by 

checking this value for all vertices v in the subtree of u and then by getting the maximal value. 

This solution is O(N2).  If implemented well it can get even 50 points.  

 

3.2 Author’s Solution 

We will use dynamic programming to solve the problem. With each vertex we will associate 3 values: 

• dpu,0 – maximum sum of values to cover the subtree of  u. 

• dpu,1 – maximum sum of values to cover the subtree of  u, if we have an unfinished path, which 
includes the root and a fixed maximum (the value of the maximum has been added in 
advance). 

• dpu,2 - maximum sum of values to cover the subtree of  u, if we have an unfinished path, which 
includes the root and a fixed minimum (the value of the minimum has been substracted in 

advance). 

• The answer to the problem will be dp1,0. 

We will use DFS, starting from the root (vertex number 1). After going through all of the children of a 

given vertex, we will calculate the three values for the vertex. Let us firstly calculate dpu,1. The 

evaluation of dpu,2 will use an analogical approach as the one for dpu,1. 

When we calculate  dpu,1, we have two possibilities: 

• A new path starts from vertex u. 

• A path, which until now finished in one of the children of u, continues through u. 

In the first case, the value will be Wu + ∑v∈children(u) dpv,0. 

In the second case, we need to choose a child of u, the path from which we want to continue. Let 

S = ∑v∈children(u) dpv,0. If the chosen child of u is p, the value of dpu,1 will be S − dpp,0 + dpp,1. 
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This way we can find the maximum value for dpu,1 and dpu,2. Now in order to calculate dpu,0, we 

once again have two possibilities: 

• To finish a path, where u is the vertex with maximum weight. 

• To finish a path, where u is the vertex with minimum weight. 

So we get dpu,0 = max(dpu,1 − Wu,dpu,2 + Wu). 

This solution has a complexity of O(N) if it’s implemented by the described above way. 

3.3 Second Solution (Encho Mishinev) 

We will once again use dynamic programming. However, we will use the second observation – that 

an optimal decomposition into paths exists, such that the values in each path are either only 

increasing or only decreasing. If we decompose the tree in such fashion, we can say, that the weight 

of a path is the sum of the absolute differences between each two consecutive vertices. For 

increasing or decreasing paths this definition is equivalent to Wmax − Wmin With each vertex we will 

associate 2 values: 

• Fv,0 – maximum sum of values for the covering of the subtree of u, if the path starting from u is 

with decreasing weights. 

• Fv,1 - maximum sum of values for the covering of the subtree of u, if the path starting from u is 

with increasing weights. 

The answer to the problem will then be max(F1,0,F1,1) 

The calculation of Fv,0 and Fv,1 is analogical, so we will focus only on the calculation of  Fv,0: 

Let S = ∑x∈children(v) max(Fx,0,Fx,1). 

Because a decreasing path starts from v, we have top chose to which child it continues. If this 

child is u (Wu ≤ Wv), the value will be S − max(Fu,0,Fu,1) + (Wv − Wu) + Fu,0. 

We have to remember the case, where v is a path, consisting only of one vertex and thus the 

value is simply S. 

This way with O(1) we can evaluate the value for a fixed child, which allows us  to calculate all 

values in the tree with a complexity of O(N). 
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4 Additional information 
You can try to solve a more difficult version of the problem. In it once again you need to maximize 

the sum of the paths, where the value of a path is once again the difference between the largest and 

smallest weight in the path, however we have one more condition – each path has to have              

length ≤ K, where K is a given integer. 

This version of the problem can be solved with a complexity of O(N log N), using a segment tree, 

or with a complexity of O(N log2 N), using the technique, described here: 

http://codeforces.com/blog/entry/44351. 

http://codeforces.com/blog/entry/44351
http://codeforces.com/blog/entry/44351

