

CYBERLAND SOLUTION

## STATEMENT

Given a undirected weighted graph with $N$ nodes and $M$ edges. Some nodes can clear the current distance to 0 , while some can divide the distance by 2 . In each visit, you can only use the special ability at most once, and you can choose not to use the ability on the node.

Find the shortest path from O to H , if you can not visit H twice, and the divide-by-2 ability can be used at most $K$ times.
$N, M<=10^{\wedge} 5, K<=10^{\wedge} 6$

## STATEMENT?

Given a undirected weighted graph with $N$ nodes and $M$ edges. Some nodes can clear the current distance to 0 , while some can divide the distance by 2 . In each visit, you can only use the special ability at most once, and you must use the ability on the node.

Find the shortest path from 0 to H , if you can not visit H twice, and the divide-by-2 ability can be used at most $K$ times.
$N, M<=10^{\wedge} 5, K<=30$

## SUBTASK 1

$\mathrm{n}<=3$
Either go directly H , or go to H after passing through the third node.
Because $0, \mathrm{H}$ has no special abilities, it is obviously not beneficial to repeatedly visit the third point.

Time complexity $\mathrm{O}(1)$

## SUBTASK 2,5

No Special ability。
A simple single source shortest path(SSSP) problem which can be solved through Dijkstra algorithm.

Time Complexity $O(M \log n)$ 。

## SUBTASK 3,6

No divide-by-2 ability.
Find the set of node $S$, which have set-zero ability, and can be reached from 0 without go through H .

If we reach any node in $S$, we can clear the distance to 0 . So it's a multiple source shortest path problem with $\{S\} \cup\{0\}$ as the sourse set.

Use Dijkstra again and the time complexity is also $O(M \log N)$.

## SUBTASK 4,7

$$
K<=30
$$

Same as the idea of subtask 3,6 , we can find the set $S$, and treat the problem as a multi-source shortest path problem.

Since $K<=30$, we can use dynamic programming, and the state go as follows:
$f[i][t]$ : The shortest distance to node $i$, if exactly $\dagger$ time of special ability is used.
To transfer between states, we need to consider whether to use the special ability.

- If we do not use special ability, we can treat transition as another multi-source shortest path problem.
- If we use special ability, $t$ is increased by 1 , we can transfer in order of increasing $t$.

Time complexity $\mathrm{O}(\mathrm{MK} \log \mathrm{N})$.

## SUBTASK 8

$$
K<=1000000 \text { 。 }
$$

Suspect that $K$ is not required to be very large.
Accepted.

## WHY?

We proof that for every possible $V$, assume that we can use at most V times of divide-by- 2 ability, we can always make the absolute errors at most $N \max (C) / 2^{\wedge} K$, If we use the algorithm for subtask 7.

Here, $\max (C)$ represents the maximum cost to pass through an edge。

## WHY?

1. Assume that the optimal solution for at most i-times divide-by-2 ability usage is ans[ $i]$. Then ans[ $i]$ is non-increasing.
2. Find the optimal solution of at most V -times divide-by-2 ability usage( $\mathrm{V} \gg \mathrm{K}$ holds). We call this the original solution.
3. Keep the last K divide-by-two ability usage of the original solution, and delete all previous divide-by-two ability usage. We call this the intermediate solution.
4. Assuming that the intermediate path uses divided-by-two ability first in node $p$. Replace the path before first divided-by-two ability usage, with the shortest path from 0 to $p$ without using divide-by-2 ability. We call this path the edited solution.
5. The shortest path from 0 to $p$ is at most $N$ max\{ $\{C$, and edited solution preserves the path of the original solution after the last $K$ divide-by-two ability usage. So it is at most $N \max \{C\} / 2^{\wedge} K$ worse than the original solution.

## NOTE

Take $K=\min \{K, 70\}$, and an absolute error of at most $1 \mathrm{e}-7$ can be achieved.
Time complexity $\mathrm{O}(\mathrm{m} \log \mathrm{n}(\log \mathrm{n}+\log \max \{\mathrm{V}\}-\log$ epsilon)).

