Sequence

Subtask1

- We can use a simple brute force algorithm.
- For example, enumerate over every possible (l, r) and sort(or nth_element) the sequence to find the median. Then count the occurrence.
- Time complexity: $O\left(n^{3}\right)-O\left(n^{3} \log n\right)$.

Subtask2

- Here we need to find medians of a sequence quickly.
- A simple way is to use two heaps to maintain the bigger part and the smaller part of the sequence. Or just use a balanced tree.
- Time complexity $O\left(n^{2} \log n\right)$.
- There's also another way, reverse the operations, then we just need to delete an existing value and find the medians. This can be done with a linked list in $O\left(n^{2}\right)$.

Subtask3

- For every value x, occurrences of x form two continuous subsequence.
- If we choose x as the final median. We either choose one of the subsequence or choose both if possible.
- It's easy to determine whether it's possible to choose both.

Subtask4

- If the median of the whole sequence is not 2 , then it appears in the sequence more than $n / 2$, and that's of course the answer. For the rest of the cases, choosing $l=$ $0, r=n-1, x=2$ is the best choice if $x=2$.
- Then just consider $x=1,3$. If we choose $x=1$, we can see every 1 as 1 , and every 2,3 as -1 . Then we want to find a continuous subsequence with non-negative sum and with the most 1.
- Do a prefix sum, then for every r find the smallest l satisfying sum $_{r} \geq$ sum $_{l}$.

Subtask5

- We just need to determine whether the answer is 1 or 2 .
- For every value x that appeared twice at x_{1}, x_{2} :
- Construct a sequence $B_{i}=\max \left(-1, \min \left(A_{i}-x, 1\right)\right)$.
- If we can find $l \leq x_{1} \leq x_{2} \leq r$ with sum $[-2,2]$, then x is a median of such (l, r).
- Find $l \leq x_{1} \leq x_{2} \leq r$ with the biggest sum and smallest sum, call these sums v_{1}, v_{2}. Since moving l or r by one step only affect the sum by at most 1 , so every integer sum in $\left[v_{2}, v_{1}\right]$ is achievable.

Subtask 6\&7

- From the solution of Subtask5, we can actually determine if there is (l, r) satisfying $l \leq x_{1} \leq x_{2} \leq r$ and has median x.
- View every $z \geq x$ as 1 , others as -1 , find (l, r) with maximum sum, call this v_{1}.
- View every $z>x$ as 1 , others as -1 , find (l, r) with minimum sum, call this v_{2}.
- If $v_{1} * v_{2} \leq 0$, then there exist such (l, r).

Subtask 6\&7

- Enumerate x from small to big.
- For the occurrences of x. Run two pointers to see if there is a sequence with median x and contains every x from l to r. The checking is described before.
- Time complexity: $O(n \log n)$.

