
Alice, Bob and Circuit

Task Review

• Original task
• 𝑛𝑛 persons, each with a name and a number.
• 𝑚𝑚 letters, each specified by a sender and a recipient’s names, with the content of the

sender’s number.
• For each person, calculate the sum of the received letter contents (modulo 216)
• 𝑛𝑛 ≤ 700,𝑚𝑚 ≤ 1000

• Communication style
• Alice knows the information of 𝑛𝑛 persons, and Bob knows that of 𝑚𝑚 letters. Each needs

to send a binary string within 105 bits to Circuit.
• Circuit has to use at most 2 × 107 binary logic gates to get the results.

Subtask 1

• 𝑛𝑛 = 1,𝑚𝑚 = 0
• No letters are sent. The result is simply 0.

• 0 can be generated by a gate of operation=0.
• Or, 0 can be sent from Alice to Circuit.

• Expected score: 4 points.

Subtask 2

• 𝑛𝑛 = 1,0 ≤ 𝑚𝑚 ≤ 1
• If 𝑚𝑚 = 1, the answer is the number. Else, the answer should be 0.

• Alice sends the number (16 bits).
• Bob sends 𝑚𝑚 (1 bit).
• Circuit performs 16 AND operations, and then output.

• Expected score: 8 points.

Subtask 3

• 𝑛𝑛 = 1,0 ≤ 𝑚𝑚 ≤ 1000
• Answer is the number multiplies 𝑚𝑚.

• It is unnecessary to implement multiplication in circuit.
Conducting addition for multiple times is enough for this subtask.

• Alice sends the number (16 bits).
• Bob sends 𝑚𝑚 bits (contents does not matter, only to let circuit() directly know
𝑚𝑚)

• Circuit performs 𝑚𝑚 − 1 times of addition
• Assuming each addition needs 80 gates, there are 80000 gates in total.

• Expected score: 12 points.

How to implement addition?

• 1-bit adder
• Input 3 bits: a, b, c
• Output 2 bits: s1, s0 (the binary form of A+B+C is S1 S0)
• S0 = a XOR b XOR c
• S1 = (a AND b) or ((a XOR b) AND c)
• 5 gates

• 16-bit adder
• Cascading 16 1-bit adders
• For the three inputs of the 1-bit adders, two of them come from input numbers, and the

other is the carry bit from the lower position.
• The carry bit is initially 0, and the overflowed carry bit is discarded (equivalent to

modulo 216)
• At most 80 gates (with optimization chances)

Subtask 4

• 𝑛𝑛 = 26, names appearing in order, no duplicate letters
• Means that Bob’s input can be arranged as an 𝑛𝑛 × 𝑛𝑛 0/1-matrix

• Alice sends the 26 numbers in the order from a to z (26×16 bits)
• Bob sends the 0/1-matrix (26×26 bits)
• Circuit performs AND and addition according to the matrix

• Needs 26×26×16 AND-s and 26×26 additions, which is far below the limit of 107 gates.

• Expected score: 24 points.
• Can obtain 36 points combined with Subtasks 1~3.

Subtask 5

• Based on Subtask 4, but the names may not be ordered.
• Nevertheless, Bob knows all names.

• His input can still be arranged as an 𝑛𝑛 × 𝑛𝑛 0-1 matrix.

• If Alice and Bob follow the same order (e.g., lexicographical), numbers sent
from Alice can still correspond to Bob’s matrix.

• However, this order may be different from the order of answer output.

• Alice sends an extra 26×26 0/1-matrix (where there are exactly one element
1 from each row and from each column), so that Circuit can rearrange the
order of the answers.

• Expected score: 48 points.
• Can obtain 60 points combined with Subtasks 1~3.

Subtask 6

• 𝑛𝑛 is not restricted to equal 26, and may be any value no more than 30.
• There is nothing special. You should pass this subtask unless your solution

fails strangely.
• The original purpose to place a subtask of 𝑛𝑛 = 26 is to facilitate debugging.

• Expected score: 54 points.
• Can obtain 66 points combined with Subtasks 1~3, which is the maximal score achieved

during the competition.

• There also exists another approach of 16 × 19 × 𝑛𝑛 × 𝑚𝑚, where the names are
sent from Alice and Bob to Circuit. This can also get 66 points.

Subtasks 7~9

• Subtask 7: 𝑛𝑛 = 676,𝑚𝑚 ≤ 1000, names are in order.
• Subtask 8: names may be out of order.

• Assuming we can solve 7, then how to do 8?
• We need a method to adjust the output order.
• It is too inefficient to adopt an 𝑛𝑛 × 𝑛𝑛 0/1-matrix!

• Considering there are 𝑛𝑛! possible permutations for 𝑛𝑛 elements, the lower
bound is to use log2 𝑛𝑛! = 𝑂𝑂 𝑛𝑛 log𝑛𝑛 bits to encode a permutation, to be
performed by Circuit

• We now provide a construction

How to implement an 𝑂𝑂 𝑛𝑛 log𝑛𝑛 permutation?

• For example, we need to rearrange 20 elements to the ordered state.
• Split the array into the upper and the lower halves, each with 10 elements.
• Swap the elements up and down, so that every pair of numbers with

difference 10 appears one upside and the other downside.
• It can be proved that it is always possible to do so.

0 13 16 5 2 18 12 7 11 9

15 14 4 1 17 19 3 6 8 10

0 14 16 5 2 18 3 7 11 9

15 13 4 1 17 19 12 6 8 10

swap swap Every pair of numbers with difference 10
appears one upside and the other downside

How to implement an 𝑂𝑂 𝑛𝑛 log𝑛𝑛 permutation?

• Recursively process the upper half and the lower half, so that the ones-place
becomes all correct.

• Finally, swap the elements up and down, so that all elements become correct.

0 14 16 5 2 18 3 7 11 9

15 13 4 1 17 19 12 6 8 10

Every pair of numbers with difference 10
appears one upside and the other downside

0 11 2 3 14 5 16 7 18 9

10 1 12 13 4 15 6 17 8 19

0 11 2 3 14 5 16 7 18 9

10 1 12 13 4 15 6 17 8 19

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

swap swap swap swap

How to implement an 𝑂𝑂 𝑛𝑛 log𝑛𝑛 permutation?

• There are 𝑛𝑛/2 chances of optional swapping before recursion and after
recursion, respectively. We can use 𝑛𝑛/2 bits each, to record whether to swap.

• It is similar when 𝑛𝑛 is odd. There are 𝑛𝑛
2

chances of optional swapping before
and after recursion, respectively. Not going into details here.

• Let 𝑇𝑇 𝑛𝑛 denote the number of bits to encode a permutation of 𝑛𝑛 elements.
Then 𝑇𝑇 𝑛𝑛 = 2 𝑛𝑛

2
+ 𝑇𝑇 𝑛𝑛

2
+ 𝑇𝑇 𝑛𝑛

2
. According to the master theorem,

𝑇𝑇 𝑛𝑛 = 𝑂𝑂 𝑛𝑛 log𝑛𝑛 .

Full-Score Algorithm

• Convert each person and each letter to a 4-tuple (U, V, W, T).
• A person with name X and number Y converts to (X, X, Y, 0).
• A letter with sender P and receiver Q converts to (P, Q, 0, 1).
• (Assuming each string is converted to a 19-bit integer.)

• Sort all tuples by U first then V.
• The sorting algorithm will be introduced later.

• Consider all tuples in order, maintaining a temporary variable C:
• When meeting an element of T=0 (person), assign: C <- (W of the current element)
• When meeting an element of T=1 (letter), assign: (W of the current element) <- C

• At this point, all letters are assigned with the sender’s number.

Full-Score Algorithm

• Next, sort all tuples by V first then T (descending).
• Consider all tuples in order, maintaining a temporary variable S (initially 0):

• At an element of T=1 (letter), assign: S <- S + (W of the current element)
• At an element of T=0 (person), assign: (W of the current element) <- S; S <- 0

• At this point, all persons are assigned with the correct computation result.
• Sort all tuples by T first then U.

• Now the first 𝑛𝑛 elements are persons.

• Finally, adopt the 𝑂𝑂 𝑛𝑛 log𝑛𝑛 permutation to rearrange the persons into the
order of Alice’s input, and output the result.

How to implement sorting?

• Conventional 𝑂𝑂 𝑛𝑛 log𝑛𝑛 sorting (e.g., quicksort, mergesort, heapsort) cannot
be directly implemented in circuits.

• But we can find that:
• Alice and Bob can sort their own elements in advance, respectively.
• Circuit only needs to merge two sorted arrays.

• We can use 𝑂𝑂 𝑛𝑛 log𝑛𝑛 in-place merge.
• Note that the conventional 𝑂𝑂 𝑛𝑛 merging is still unimplementable in circuits.

Final Algorithm

• Alice sends to Circuit:
• 𝑛𝑛 4-tuples of persons, sorted by name U.
• The bits encoding the permutation which can rearrange 𝑛𝑛 persons from ordered by U

into ordered by Alice’s input (i.e., output order).

• Bob sends to Circuit:
• 𝑚𝑚 4-tuples of letters, sorted by sender U.
• The bits encoding the permutation which can rearrange 𝑚𝑚 letters from ordered by U

into ordered by V.

Final Algorithm

• Circuit’s computation:
• After receiving the 4-tuples, merge two sorted arrays (first U then V).
• Perform the first sequential scan, so that the letters are assigned with senders’ numbers.
• Undo the previous merge (which can be implemented by recording whether each

comparison leads to a swap).
• Apply Bob’s permutation, to rearrange the letters from ordered by U into ordered by V.
• Merge two sorted arrays again (first U then T descending).
• Perform the second sequential scan, so that each person gets the correct result.
• Undo the previous merge.
• Apply Alice’s permutation, to rearrange the persons into Alice’s input order.
• Output the answer.

• Expected score: 100 points.

Possible but Unnecessary Optimizations

• Constant propagation: e.g., 0 AND x = 0, 0 OR x = x
• “Undefined” propagation: e.g., undefined XOR x = undefined
• Dead circuit optimization: If the result of a computation gate is never used

(directly or indirectly) by any output, the gate can be eliminated.
• Enable less thinking when writing code.

• Duplicate circuit optimization: Merge two computation gates with the same
operation type and dependency gates.

• Help check for problems in the code.

• Reference answer needs about 107 gates, or about 8 × 106 after
optimization.

The End

	Alice, Bob and Circuit
	Task Review
	Subtask 1
	Subtask 2
	Subtask 3
	How to implement addition?
	Subtask 4
	Subtask 5
	Subtask 6
	Subtasks 7~9
	How to implement an 𝑂 𝑛 log 𝑛 permutation?
	How to implement an 𝑂 𝑛 log 𝑛 permutation?
	How to implement an 𝑂 𝑛 log 𝑛 permutation?
	Full-Score Algorithm
	Full-Score Algorithm
	How to implement sorting?
	Final Algorithm
	Final Algorithm
	Possible but Unnecessary Optimizations
	The End

