《区间切割》解题报告

宋佳兴 成都外国语学校

一 题目大意

有n个区间 $[L_i, R_i]$,然后有m次切割操作,每次操作由三元组 (x, l, r)描述,对 $l \sim r$ 号区间在x处切割,如果一个区间被切成了两段,只保留较长的一段,长度相等时保留左边。

求出每个区间在所有操作后的左右端点,保证所有 x 构成 $1 \sim m$ 的排列。

二 数据范围

子任务	分值	$\mathbf{n} \leq$	$\mathbf{m} \leq$	特殊性质
1	5	5000	5000	
2	15	16000	2×10^5	AB
3	15	10^{5}	10^{6}	A
4	15	16000	2×10^5	В
5	10	10^{5}	10^{6}	В
6	20	16000	2×10^5	
7	20	10^{5}	10^{6}	

特殊性质 A: 所有 x 构成 $1 \sim m$ 的随机排列。

特殊性质 B: 每次操作的 l=1, r=n。

三 解题过程 2

时间限制: 3s。

空间限制: 512 MiB。

三 解题过程

3.1 SubTask 1

按题意模拟即可。

3.2 SubTask 2 (性质 AB)

分析性质 A,当一个区间 $[L_i, R_i]$ 被切割成两段的时候,切点等概率落在 $[L_i+1, R_i-1]$,直觉上一个区间只会经历 $O(\log m)$ 次有效切割。

结论. 一个区间期望会经历 $O(\log m)$ 次有效切割。

证明. 一次切割有 $\frac{1}{2}$ 的概率落在区间中部的 $\frac{1}{2}$,然后长度减少至少 $\frac{1}{4}$ 。假设 $\frac{1}{2}$ 的概率长度不变, $\frac{1}{2}$ 的概率长度乘 $\frac{3}{4}$,那么期望 $2\log_{\frac{4}{3}}m$ 次长度变为 1,因此期望切割次数的上界是 $2\log_{\frac{4}{3}}m$ 。

每次进行切割操作 (x,1,n) 时,只需要找到所有的区间 i 满足 $L_i < x < R_i$,然后直接模拟复杂度就有保证。一种做法是使用线段树,对于每个区间 $[L_i,R_i]$,把 $[L_i+1,R_i-1]$ 拆分成 $O(\log m)$ 个线段树节点,把 i 挂到这些节点上,进行操作时遍历 x 对应叶子节点到根的路径,找到需要修改的区间,修改它们后再重新挂到线段树上,复杂度 $O(n\log^2 m + m\log m)$ 。

更简单的做法是离线。记 $time_i$ 表示位置 i 被切割的时间,那么区间 $[L_i,R_i]$ 第一次被切割的时间为 $mintime_{L_i+1\sim R_i-1}$,假设第一次切割后区间变成了 $[L'_i,R'_i]$,那么第二次切割的时间为 $mintime_{L'_i+1\sim R'_i-1}$,以此类推。使用 ST 表解决区间最小值查询,复杂度为 $O((n+m)\log m)$ 。

3.3 SubTask 3 (性质 A)

延续 SubTask 2 的离线做法,考虑一个区间 $[L_i, R_i]$,它第一次被切割 的时间不再是 $\min time_{L_i+1\sim R_i-1}$,因为有些操作 (x,l,r) 不包含 i,那么

三 解题过程 3

 $time_x$ 就应当视为无穷大。我们以 $i=1\sim n$ 的顺序求出区间 i 的答案,time 数组会在这个过程中变化。初始时 $time_{1\sim m}=\infty$,对于操作 (x,l,r),在处理区间 l 之前把 $time_x$ 修改为操作本来的时间,在处理区间 r 之后把 $time_x$ 修改为 ∞ 。用线段树维护 time 数组来支持单点修改和区间最小值 查询,复杂度 $O(n\log^2 m + m\log m)$ 。

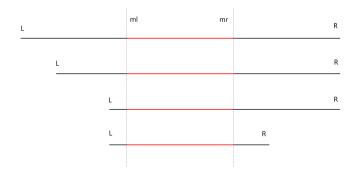
3.4 SubTask 4,5 (性质 B)

没有了性质 A,会面临一个很大的困难:一个区间会经历 O(n) 次有效切割,快速处理一系列操作不是一件容易的事。考虑一个区间会经历 O(n) 次有效切割的原因是什么,就是切点可以很靠近区间的端点,让区间长度减少得很缓慢,反过来,只要切点位于区间中间的 80%,就能让长度按比例减少,从而只会发生 $O(\log m)$ 次。我们的想法是找出并模拟切点不靠近两端的情况,剩下的情况就是切左边改左端点,切右边改右端点,左右端点的变化就独立了。

结论. 把一个区间 [L,R] 等分成三段 [L,ml], [ml,mr], [mr,R], 如果有一系列操作 x_1,x_2,\cdots,x_k 都不在 [ml,mr] 中,那么单个 x_i 的效果就是:

$$\begin{cases} L = \max(L, x_i) & (x_i < ml) \\ R = \min(R, x_i) & (x_i > mr) \end{cases}$$

注意这里 ml, mr 不随 L, R 变化,如下图所示。



证明. 观察图片可知: 当 $L < x_i < ml$ 时 $[L, x_i]$ 更短, 当 $mr < x_i < R$ 时 $[x_i, R]$ 更短。

三 解题过程 4

有了这个结论,思路就很明显了,对于区间 $[L_i, R_i]$,设 [ml, mr] 是它中间的 $\frac{1}{3}$,等到切点落在 [ml, mr] 的时候再处理这个区间,这样就只需要处理 $O(\log m)$ 次。

延续 SubTask 2 的离线做法,记 $time_i$ 表示位置 i 被切割的时间,对区间 $[L_i,R_i]$,计算 t 表示 $mintime_{ml\sim mr}$ 的位置,先求出进行 t 操作前一时刻的左右端点 L'_i,R'_i 。

记 tl 表示 t 左边第一个比 $time_t$ 小的位置(不存在为 0),记 tr 表示 t 右边第一个比 $time_t$ 小的位置(不存在为 m+1),那么 $L_i' = \max(L_i, tl)$, $R_i' = \min(R_i, tr)$,然后直接模拟 t 操作。使用 ST 表解决区间最小值查询,单调栈预处理每个 t 的 tl 和 tr,复杂度 $O((n+m)\log m)$,可以通过 SubTask 4,5。

延续 SubTask 2 的线段树做法,可以做到 $O(n\log^2 m + m\log m)$,也可以通过 SubTask 4,5。

3.5 正解

把 SubTask 3 和 5 中的离线做法结合起来就可以得到正解,具体地,需要维护一个 time 数组,支持单点修改,查询区间最小值,以及 t 左边和右边第一个比 $time_t$ 小的位置,用线段树即可,每种操作都是 $O(\log m)$,因此总复杂度为 $O(n\log^2 m + m\log m)$ 。

如果求"t 左边和右边第一个比 $time_t$ 小的位置"时使用二分 + 区间最小值,那么总复杂度为 $O(n \log^3 m + m \log m)$,只能通过 SubTask 1,2,4,6。