Problem I. Ticket-punch

Input file:	punch.in
Output file:	punch.out
Time limit:	2 seconds
Memory limit:	256 mebibytes

Moscow Megapolice Departament of Public Transport decided to use ticket-punches in the airbuses and airmetro systems. Every passenger should insert rectangle ticket in ticket-punch and then receive it back with several square holes. A ticket-punch is a rectangle of $(2 N+1) \times(2 M+1)$ square cells. Let the rectangle rows be enumerated with integers from 1 to $2 N+1$ and columns with integers from 1 to $2 M+1$. Some cells with both even coordinates (at least one but, maybe, not all such cells) have square pins on them. These cells define the pattern of the ticket-punch. When a ticket is punched, each pin makes a square hole in the ticket. A ticket-punch can punch a ticket if every pin will make a hole, that is, every pin is strictly inside the ticket.

To prevent using one ticket more than once, each bus must have its own ticket-punch. Two ticketpunches are considered different if and only if their patterns cannot be matched using rotations, translations and/or reflections.
Given N and M, find the number of different ticket-punches of size $(2 N+1) \times(2 M+1)$ modulo $10^{9}+7$.

Input

The input contains several test cases. Each test case consists of one line containing two integers N and $M(1 \leqslant N, M \leqslant 1000)$. The input file ends with the test case $N=M=0$ which should not be processed. There are no more than 100000 test cases in a single test (not including the terminating $N=M=0$ case).

Output

For each test case, print the number of different ticket-punches of size $(2 N+1) \times(2 M+1)$ modulo $10^{9}+7$.

Example

	punch.in		punch.out
2	2		5
2	3		19
0	0		

