Problem C. Longest beautiful sequence

Input file:
Output file:
Time limit:
Memory limit:
subsequence.in
subsequence.out
3 seconds
256 megabytes

You're given two sequences of n nonnegative integer numbers: $a_{1}, a_{2}, \ldots, a_{n}$ and $k_{1}, k_{2}, \ldots, k_{n}$. The sequence of m integer numbers $i_{1}, i_{2}, \ldots, i_{m}$ is called beautiful if it meets with following criteria:

- $1 \leq i_{1}<i_{2}<\ldots<i_{m} \leq n$. In other words, sequence must be increasing.
- $\operatorname{bitCount}\left(a_{i_{j-1}}\right.$ AND $\left.a_{i_{j}}\right)=k_{i_{j}}$ for all $1<j \leq m$.

Find longest beautiful sequence.

Input

On first line of input given positive integer number $n\left(1 \leq n \leq 10^{5}\right)$ - the length of sequences a and k. Second line of input contains n nonnegative integer numbers $a_{i}\left(0 \leq a_{i}<2^{20}\right)$ - sequence a. Third line of input contains n nonnegative integer numbers $k_{i}\left(0 \leq k_{i} \leq 20\right)$ - sequence k. Numbers in both sequences are separated by single spaces.

Output

On first line of output print out one integer number m - length of longest beautiful sequence. On second line print out m integers - longest beautiful sequence, separated by single spaces. If there is multiple solutions, print any of them.

Scoring

This problem consists of four subtasks:

1. $1 \leq n \leq 15,0 \leq a_{i}<2^{20}$. This subtask worths 7 points.
2. $1 \leq n \leq 5000,0 \leq a_{i}<2^{20}$. This subtask worths 16 points.
3. $1 \leq n \leq 10^{5}, 0 \leq a_{i}<2^{8}$. This subtask worths 17 points.
4. $1 \leq n \leq 10^{5}, 0 \leq a_{i}<2^{20}$. This subtask worths 60 points.

Each subtask will be scored only if the solution successfully passes all of the previous subtasks.

Examples

	subsequence.in				subsequence.out	
4	2	3	4	4		
10	0	1	0	1	2	3

Note

$\operatorname{bitCount}(x)-$ number of ones in binary representation, e.g. $\operatorname{bitCount}\left(5_{10}\right)=\operatorname{bitCount}\left(101_{2}\right)=2$, $\operatorname{bitCount}(0)=0, \operatorname{bitCount}(8)=1$.
AND - is a binary operation, which takes two equal-length binary representations and performs the logical AND operation on each pair of the corresponding bits, e.g. 11_{10} AND $13_{10}=1011_{2}$ AND $1101_{2}=1001_{2}=9,7_{10}$ AND $16_{10}=111_{2}$ AND $10000_{2}=0_{2}=0_{10}$.

