



## Problem B. Beautiful Sequence Unraveling

| Input file:   | standard input  |
|---------------|-----------------|
| Output file:  | standard output |
| Time limit:   | 7 seconds       |
| Memory limit: | 512 mebibytes   |

You are a happy possessor of the powerful tool called *Beautiful Sequence Unraveler* (BSU). This tool works with beautiful sequences. A *beautiful sequence* is an array  $a_1, a_2, \ldots, a_n$  of n integers for which the following statement holds: there are no integers i such that  $1 \le i < n$  and  $\max\{a_1, \ldots, a_i\} = \min\{a_{i+1}, \ldots, a_n\}$ .

BSU deals with beautiful sequences pretty well, but you do not know how frequently such sequences occur. So you want to calculate the number of beautiful sequences among all the arrays of length n which consist of integers between 1 and k, inclusively. Since this number may be large, you are required to calculate it modulo prime number p.

## Input

The only line contains three integers n, k, p  $(1 \le n \le 400, 1 \le k \le 10^8, 998\,244\,353 \le p \le 10^9 + 9)$ . It is guaranteed that p is prime.

## Output

Print the answer to the problem modulo p.

## Examples

| standard input       | standard output |
|----------------------|-----------------|
| 2 2 100000007        | 2               |
| 3 4 100000009        | 36              |
| 228 112263 998244353 | 379700769       |