## Problem C. Brave Seekers of Unicorns

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 1 second |
| Memory limit: | 512 mebibytes |

You are a member of the Brave Seekers of Unicorns (BSU), the secret magical order. The BSU is fond of seeking unicorns. Recently, they have agreed to call an array $a_{1}, a_{2}, \ldots, a_{k}$ of $k$ integers a unicorn if it satisfies the following conditions:

- the array is not empty $(k>0)$;
- there are no three consecutive elements with their bitwise XOR equal to zero $\left(a_{i} \oplus a_{i+1} \oplus a_{i+2} \neq 0\right.$ for all $1 \leq i \leq k-2$ );
- the array is strictly increasing ( $a_{i}<a_{i+1}$ for all $1 \leq i \leq k-1$ );
- the elements of the array are integers between 1 to $n$, inclusively ( $1 \leq a_{i} \leq n$ for all $1 \leq i \leq k$ ).

For example, if $n=10$, then the array $[1,4,5,9]$ is not a unicorn because $1 \oplus 4 \oplus 5=0$, but the array $[2,4,7,9]$ is a unicorn.
The Grand Master of the BSU has commanded you to calculate the number of unicorns. Since the number can be pretty large, you must compute it modulo 998244353.

## Input

The only line contains an integer $n\left(1 \leq n \leq 10^{6}\right)$.

## Output

Print the number of unicorns modulo 998244353 .

## Examples

| standard input | standard output |
| :--- | :--- |
| 1 | 1 |
| 2 | 3 |
| 3 | 6 |
| 322 | 26 |

