

Problem C. Brave Seekers of Unicorns

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

You are a member of the Brave Seekers of Unicorns (BSU), the secret magical order. The BSU is fond of seeking unicorns. Recently, they have agreed to call an array a_1, a_2, \ldots, a_k of k integers a *unicorn* if it satisfies the following conditions:

- the array is not empty (k > 0);
- there are no three consecutive elements with their bitwise XOR equal to zero $(a_i \oplus a_{i+1} \oplus a_{i+2} \neq 0$ for all $1 \le i \le k-2$);
- the array is strictly increasing $(a_i < a_{i+1} \text{ for all } 1 \leq i \leq k-1);$
- the elements of the array are integers between 1 to n, inclusively $(1 \le a_i \le n \text{ for all } 1 \le i \le k)$.

For example, if n = 10, then the array [1, 4, 5, 9] is not a unicorn because $1 \oplus 4 \oplus 5 = 0$, but the array [2, 4, 7, 9] is a unicorn.

The Grand Master of the BSU has commanded you to calculate the number of unicorns. Since the number can be pretty large, you must compute it modulo 998 244 353.

Input

The only line contains an integer $n \ (1 \le n \le 10^6)$.

Output

Print the number of unicorns modulo 998 244 353.

Examples

standard input	standard output
1	1
2	3
3	6
5	26
322	782852421