Problem N. Best Solution Unknown

Input file: standard input
Output file: standard output
Time limit: 3 seconds
Memory limit: $\quad 512$ mebibytes

You are the responsible holder of a competition called Best Solution Unknown (BSU). The rules of this competition are simple but rather quirky.

First, all the n participants stand in a row. Then, $n-1$ matches are held. In each match, jury chooses two adjacent players. The chosen players are given an NP-hard problem, and they try their best to come up with a good solution. The one who provides a better solution wins a round, the other one leaves the competition. After that, players shift to form a valid row again, so the player adjacent to the player that has left the competition becomes adjacent to the winner of the round. As you can see, after all the $n-1$ matches, only one player remains, and this player is declared a winner of the competition.

You know the competitors well, so you know the strength of each player before the competition. The strength of the i-th player, counting from the left of the row, is a_{i}. You also know that a player with greater strength wins the match. If the players have equal strength, both have a chance to win. You have noticed that victories motivate the players, so the strength of the winner of a match increases by one.
However, you do not know who plays in each match and who wins a match in case of equal strengths. So, you are wondering who can become the winner of the competition. You thought it was a good problem for the participants of BSU, but, unfortunately, it is not NP-hard, so you have to solve it yourself.

Input

The first line contains an integer n, denoting the number of participants of BSU $\left(1 \leq n \leq 10^{6}\right)$.
The second line contains n integers a_{i}, where a_{i} is the initial strength of the i-th participant $\left(1 \leq a_{i} \leq 10^{9}\right)$.

Output

The first line should contain an integer k, the number of participants that can possibly win the competition ($1 \leq k \leq n$).
The second line should contain k integers b_{i} in strictly increasing order, the indices of these participants $\left(1 \leq b_{1}<b_{2}<\ldots<b_{k} \leq n\right)$.

Examples

standard input				standard output
3	2	2	3	
3		1	2	3
1	2	1	1	
5			2	
1	2	3	5	5

