

July 14, 2019

jumps

Triple Jump

There is a very long straight road, which consists of N sections numbered from 1 through N. Each section has specific firmness, and the firmness of the section i ($1 \le i \le N$) is A_i .

JOI-kun, the gifted sport star, is going to play triple jump. A triple jump consists of three consecutive jumps. Let a, b, c be the numbers of sections at which JOI-kun takes off, then the following conditions should be met.

- a < b < c. Namely, the numbers of the sections should be increasing.
- $b-a \le c-b$. Namely, the jumping distance of the first jump should be less than or equal to the jumping distance of the second jump.

JOI-kun is going to perform Q triple jumps. In the j-th $(1 \le j \le Q)$ triple jump, he should take off at sections whose numbers are in the range of L_i to R_i . In other words, $L_i \le a < b < c \le R_i$ must be hold.

JOI-kun wants to take off at firmer sections. For each triple jump, JOI-kun is curious to know the maximum sum of firmness of the sections at which JOI-kun takes off.

Write a program that, given the number of sections and the information of triple jumps, calculates for each triple jump the maximum sum of firmness of the sections at which JOI-kun takes off.

Inputs

Read the following data from the standard input. All the values in the input are integers.

N $A_1 A_2 \cdots A_N$ Q $L_1 R_1$ $L_2 R_2$ $L_Q R_Q$

Outputs

Write Q lines to the standard output. The j-th $(1 \le j \le Q)$ line should contain the maximum sum of firmness of the sections at which JOI-kun takes off in the *j*-th triple jump.

JOI Open Contest July 14, 2019

jumps

Constraints

- $3 \le N \le 500\,000$.
- $1 \le A_i \le 100\,000\,000\,(1 \le i \le N)$.
- $1 \le Q \le 500\,000$.
- $1 \le L_j < L_j + 2 \le R_j \le N \ (1 \le j \le Q)$.

Subtasks

- 1. (5 points) $N \le 100$, $Q \le 100$.
- 2. (14 points) $N \le 5000$.
- 3. (27 points) $N \le 200\,000$, Q = 1, $L_1 = 1$, $R_1 = N$.
- 4. (54 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
5	12
5 2 1 5 3	9
3	12
1 4	
2 5	
1 5	

In the first jump, JOI-kun can achieve the maximum sum of 12 by taking off at the sections 1, 2 and 4.

In the second jump, JOI-kun can achieve the maximum sum of 9 by taking off at the sections 3, 4 and 5. If he takes off at the sections 2, 4 and 5, the sum of firmness is 10, but $b - a \le c - b$ is not satisfied.

In the third jump, JOI-kun can achieve the maximum sum of 12 by taking off at the sections 1, 2 and 4. If he takes off at the sections 1, 4 and 5, the sum of firmness is 13, but $b - a \le c - b$ is not satisfied.

The 18th Japanese Olympiad in Informatics (JOI 2018/2019) JOI Open Contest July 14, 2019

jumps

Sample Input 2	Sample Output 2
5	14
5 4 4 5 4	
1	
1 5	

This sample input satisfies the constraints for Subtask 3.

Sample Input 3	Sample Output 3
15	277
12 96 100 61 54 66 37 34 58 21 21 1 13 50 81	227
12	72
1 15	262
3 12	178
11 14	181
1 13	174
5 9	257
4 6	208
6 14	262
2 5	262
4 15	113
1 7	
1 10	
8 13	