

crossing

Crossing

Do you know Just Odd Investigations Laboratory? The business of this laboratory is to do "just odd investigations." In the following, we call it JOI Laboratory for short.

In recent years, broad gardens with splendid flowers were discovered in several historical ruins in the world. JOI Laboratory discovered that the flowers in these gardens are new species, and their genes have similar features. The genes of these new flowers are strings of length N consisting of J, O, I. These strings are called **gene sequences**.

You are a researcher working in JOI Laboratory. You initially have three flowers of new species. Their gene sequences are S_A , S_B , S_C , respectively.

You can obtain a flower of new species from two flowers of new species by an operation called **crossing**. The *i*-th character $(1 \le i \le N)$ of the gene sequence of the new flower is determined by the following rule.

- If the *i*-th characters of the gene sequences of the two flowers are the same, the *i*-th character of the gene sequence of the new flower will be the same character.
- If the *i*-th characters of the gene sequences of the two flowers are different, the *i*-th character of the gene sequence of the new flower will be one of J, O, or I which is different from these two characters.

In other words, if the *i*-th characters of the gene sequences of the two flowers are c_1 and c_2 , the *i*-th character c_3 of the gene sequence of the new flower is given by the following table.

c_1	J	J	J	0	0	0	I	I	I
c_2	J	0	I	J	0	I	J	0	I
c_3	J	I	0	Ι	0	J	0	J	I

You may use the same flower for crossing as many times as you want. If you obtain a new flower by crossing, you may use it for subsequent crossings.

In order to obtain more beautiful flowers, JOI Laboratory proposed (Q+1) gene sequences numbered from 0 to Q as candidate gene sequences. You are given a list describing the candidate gene sequences. The list contains a string T_0 and, for each j ($1 \le j \le Q$), integers L_j, R_j and a character C_j . The candidate gene sequences are given as follows.

- The candidate gene sequence 0 is T_0 .
- The candidate gene sequence j ($1 \le j \le Q$) is obtained from the candidate gene sequence j-1 by replacing the characters from the L_j -th position to the R_j -th position by the character C_j .

JOI Open Contest

crossing

June 6, 2021

Write a program which, given an integer N, the gene sequences of the three initial flowers, and the list describing the candidate gene sequences, determines, for each candidate gene sequence, whether it is possible to obtain a flower whose gene sequence is the given one from the three initial flowers by crossing zero or more times.

Input

Read the following data from the standard input.

```
N
S_A
S_B
S_C
Q
T_0
L_1 R_1 C_1
\vdots
L_O R_O C_O
```

Output

Write (Q + 1) lines to the standard output. In the (j + 1)-th line $(0 \le j \le Q)$, output Yes if it is possible to obtain a flower whose gene sequence is the candidate gene sequence j from the three initial flowers by crossing zero or more times. Otherwise, output No.

Constraints

- $1 \le N \le 200\,000$.
- S_A , S_B , S_C are strings of length N. Each character is either J, O, or I.
- $1 \le Q \le 200\,000$.
- T_0 is a string of length N. Each character is either J, 0, or I.
- $1 \le L_j \le R_j \le N \ (1 \le j \le Q)$.
- C_j is either J, 0, or I $(1 \le j \le Q)$.

June 6, 2021

crossing

Subtasks

- 1. (3 points) $S_A = S_B = S_C$, $N \le 100$.
- 2. (23 points) $S_A = S_B = S_C$.
- 3. (23 points) $N \le 100$.
- 4. (51 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
4	Yes
3030	No
JJOI	Yes
0300	Yes
3	
IJOJ	
1 4 0	
2 2 J	
2 4 I	

The gene sequences of the three initial flowers are JOJO, JJOI, and OJOO. In the following, new flowers obtained by crossing are written as their gene sequences.

- 1. T_0 is IJOJ. Since it is possible to obtain IJOJ by crossing JJOI with OJOO, output Yes.
- 2. T_1 is 0000. Since it is impossible to obtain 0000 from the three initial flowers by crossing zero or more times, output No.
- 3. T_2 is 0J00. Since you have 0J00 in the beginning without crossing, output Yes.
- 4. T_3 is OIII. You can obtain IJOJ by crossing JJOI with OJOO. Then you can obtain OIII by crossing JOJO with IJOJ. Therefore, output Yes.

This sample input satisfies the constraints of Subtasks 3, 4.

The 20th Japanese Olympiad in Informatics (JOI 2020/2021)

JOI Open Contest June 6, 2021

crossing

Sample Input 2	Sample Output 2		
3	No		
JOI	No		
JOI	Yes		
JOI			
2			
OJI			
1 2 0			
1 1 J			

The gene sequences of the three initial flowers are JOI only. You can obtain JOI only by crossing.

- 1. T_0 is OJI. Since it is impossible to obtain this flower by crossing, output No.
- 2. T_1 is 00I. Since it is impossible to obtain this flower by crossing, output No.
- 3. T_2 is JOI. Since it is possible obtain this flower, output Yes.

This sample input satisfies the constraints of Subtasks 1, 2, 3, 4.