
keys
IOI 2021 Day 1 Tasks

English (ISC)

Keys
Timothy the architect has designed a new escape game. In this game, there are n rooms numbered
from 0 to n− 1. Initially, each room contains exactly one key. Each key has a type, which is an
integer between 0 and n− 1, inclusive. The type of the key in room i (0 ≤ i ≤ n− 1) is r[i].
Note that multiple rooms may contain keys of the same type, i.e., the values r[i] are not necessarily
distinct.

There are also m bidirectional connectors in the game, numbered from 0 to m − 1. Connector j (
0 ≤ j ≤ m − 1) connects a pair of different rooms u[j] and v[j]. A pair of rooms can be connected
by multiple connectors.

The game is played by a single player who collects the keys and moves between the rooms by
traversing the connectors. We say that the player traverses connector j when they use this
connector to move from room u[j] to room v[j], or vice versa. The player can only traverse
connector j if they have collected a key of type c[j] before.

At any point during the game, the player is in some room x and can perform two types of actions:

collect the key in room x, whose type is r[x] (unless they have collected it already),
traverse a connector j, where either u[j] = x or v[j] = x, if the player has collected a key of
type c[j] beforehand. Note that the player never discards a key they have collected.

The player starts the game in some room s not carrying any keys. A room t is reachable from a
room s, if the player who starts the game in room s can perform some sequence of actions described
above, and reach room t.

For each room i (0 ≤ i ≤ n− 1), denote the number of rooms reachable from room i as p[i].
Timothy would like to know the set of indices i that attain the minimum value of p[i] across
0 ≤ i ≤ n− 1.

Implementation Details

You are to implement the following procedure:

 int[] find_reachable(int[] r, int[] u, int[] v, int[] c)

r: an array of length n. For each i (0 ≤ i ≤ n− 1), the key in room i is of type r[i].
u, v: two arrays of length m. For each j (0 ≤ j ≤ m − 1), connector j connects rooms u[j]
and v[j].
c: an array of length m. For each j (0 ≤ j ≤ m − 1), the type of key needed to traverse
connector j is c[j].

Keys (1 of 4)

This procedure should return an array a of length n. For each 0 ≤ i ≤ n− 1, the value of
a[i] should be 1 if for every j such that 0 ≤ j ≤ n− 1, p[i] ≤ p[j]. Otherwise, the value of
a[i] should be 0.

Examples

Example 1

Consider the following call:

 find_reachable([0, 1, 1, 2],

 [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])

If the player starts the game in room 0, they can perform the following sequence of actions:

Current room Action

0 Collect key of type 0

0 Traverse connector 0 to room 1

1 Collect key of type 1

1 Traverse connector 2 to room 2

2 Traverse connector 2 to room 1

1 Traverse connector 3 to room 3

Hence room 3 is reachable from room 0. Similarly, we can construct sequences showing that all
rooms are reachable from room 0, which implies p[0] = 4. The table below shows the reachable
rooms for all starting rooms:

Starting room i Reachable rooms p[i]

0 [0, 1, 2, 3] 4

1 [1, 2] 2

2 [1, 2] 2

3 [1, 2, 3] 3

The smallest value of p[i] across all rooms is 2, and this is attained for i = 1 or i = 2. Therefore,
this procedure should return [0, 1, 1, 0].

Example 2

Keys (2 of 4)

 find_reachable([0, 1, 1, 2, 2, 1, 2],

 [0, 0, 1, 1, 2, 3, 3, 4, 4, 5],

 [1, 2, 2, 3, 3, 4, 5, 5, 6, 6],

 [0, 0, 1, 0, 0, 1, 2, 0, 2, 1])

The table below shows the reachable rooms:

Starting room i Reachable rooms p[i]

0 [0, 1, 2, 3, 4, 5, 6] 7

1 [1, 2] 2

2 [1, 2] 2

3 [3, 4, 5, 6] 4

4 [4, 6] 2

5 [3, 4, 5, 6] 4

6 [4, 6] 2

The smallest value of p[i] across all rooms is 2, and this is attained for i ∈ {1, 2, 4, 6}. Therefore,
this procedure should return [0, 1, 1, 0, 1, 0, 1].

Example 3

 find_reachable([0, 0, 0], [0], [1], [0])

The table below shows the reachable rooms:

Starting room i Reachable rooms p[i]

0 [0, 1] 2

1 [0, 1] 2

2 [2] 1

The smallest value of p[i] across all rooms is 1, and this is attained when i = 2. Therefore, this
procedure should return [0, 0, 1].

Constraints

2 ≤ n ≤ 300 000
1 ≤ m ≤ 300 000
0 ≤ r[i] ≤ n− 1 for all 0 ≤ i ≤ n− 1
0 ≤ u[j], v[j] ≤ n− 1 and u[j] ≠ v[j] for all 0 ≤ j ≤ m − 1

Keys (3 of 4)

0 ≤ c[j] ≤ n− 1 for all 0 ≤ j ≤ m − 1

Subtasks

1. (9 points) c[j] = 0 for all 0 ≤ j ≤ m − 1 and n,m ≤ 200
2. (11 points) n,m ≤ 200
3. (17 points) n,m ≤ 2000
4. (30 points) c[j] ≤ 29 (for all 0 ≤ j ≤ m − 1) and r[i] ≤ 29 (for all 0 ≤ i ≤ n− 1)
5. (33 points) No additional constraints.

Sample Grader

The sample grader reads the input in the following format:

line 1: n m

line 2: r[0] r[1] … r[n− 1]
line 3 + j (0 ≤ j ≤ m − 1): u[j] v[j] c[j]

The sample grader prints the return value of find_reachable in the following format:

line 1: a[0] a[1] … a[n− 1]

Keys (4 of 4)

