
1	/	3

International	Olympiad	in	Informatics	2014
13-20th	July	2014
Taipei,	Taiwan
Day-1	tasks

rail
Language:	en-ISC

Rail
Taiwan	has	a	big	railway	line	connecting	the	western	and	eastern	shores	of	the	island.	The	line
consists	of	 	blocks.	The	consecutive	blocks	are	numbered	 ,	starting	from	the	western
end.	Each	block	has	a	one-way	west-bound	track	on	the	north,	a	one-way	east-bound	track	on	the
south,	and	optionally	a	train	station	between	them.

There	are	three	types	of	blocks.	A	type	C	block	has	a	train	station	that	you	must	enter	from	the
northern	track	and	exit	to	the	southern	track,	a	type	D	block	has	a	train	station	that	you	must	enter
from	the	southern	track	and	exit	to	the	northern	track,	and	a	type	empty	block	has	no	train	station.	For
example,	in	the	following	figure	block	0	is	type	empty,	block	1	is	type	C,	and	block	5	is	type	D.	Blocks
connect	to	each	other	horizontally.	Tracks	of	adjacent	blocks	are	joined	by	connectors,	shown	as
shaded	rectangles	in	the	following	figure.

The	rail	system	has	 	stations	numbered	from	0	to	 .	We	assume	that	we	can	go	from	any
station	to	any	other	station	by	following	the	track.	For	example	we	can	go	from	station	0	to	station	2
by	starting	from	block	2,	then	passing	through	blocks	3	and	4	by	the	southern	track,	and	then	passing
through	station	1,	then	passing	through	block	4	by	the	northern	track,	and	finally	reaching	station	2	at
block	3.

Since	there	are	multiple	possible	routes,	the	distance	from	one	station	to	another	is	defined	as	the
minimum	number	of	connectors	the	route	passes	through.	For	example	the	shortest	route	from	station
0	to	2	is	through	blocks	2-3-4-5-4-3	and	passes	through	5	connectors,	so	the	distance	is	5.

A	computer	system	manages	the	rail	system.	Unfortunately	after	a	power	outage	the	computer	no
longer	knows	where	the	stations	are	and	what	types	of	blocks	they	are	in.	The	only	clue	the	computer
has	is	the	block	number	of	station	0,	which	is	always	in	a	type	C	block.	Fortunately	the	computer	can
query	the	distance	from	any	station	to	any	other	station.	For	example,	the	computer	can	query	'what	is
the	distance	from	station	0	to	station	2?'	and	it	will	receive	5.

Task
You	need	to	implement	a	function	findLocation	that	determines	for	each	station	the	block	number
and	block	type.

2	/	3

findLocation(n,	first,	location,	stype)
n:	the	number	of	stations.
first:	the	block	number	of	station	0.
location:	array	of	size	 ;	you	should	place	the	block	number	of	station	 	into
location[i].
stype:	array	of	size	 ;	you	should	place	the	block	type	of	station	 	into	stype[i]:	1	for
type	C	and	2	for	type	D.

You	can	call	a	function	getDistance	to	help	you	find	the	locations	and	types	of	stations.
getDistance(i,	j)	returns	the	distance	from	station	i	to	station	j.	getDistance(i,	i)
will	return	0.	getDistance(i,	j)	will	return	-1	if	i	or	j	is	outside	the	range	

.

Subtasks
In	all	subtasks	the	number	of	blocks	 	is	no	more	than	1,000,000.	In	some	subtasks	the	number	of
calls	to	getDistance	is	limited.	The	limit	varies	by	subtask.	Your	program	will	receive	'wrong
answer'	if	it	exceeds	this	limit.

subtask points getDistance
calls note

1 8 unlimited All	stations	except	0	are	in	type	D	blocks.

2 22 unlimited
All	stations	to	the	right	of	station	0	are	in	type
D	blocks,	and	all	stations	to	the	left	of	station	0
are	in	type	C	blocks.

3 26 no	additional	limits
4 44 no	additional	limits

Implementation	details
You	have	to	submit	exactly	one	file,	called	rail.c,	rail.cpp	or	rail.pas.	This	file	implements
findLocation	as	described	above	using	the	following	signatures.	You	also	need	to	include	a	header
file	rail.h	for	C/C++	implementation.
C/C++	program

void	findLocation(int	n,	int	first,	int	location[],	int	stype[]);

Pascal	program

procedure	findLocation(n,	first	:	longint;	var	location,
stype	:	array	of	longint);

3	/	3

The	signatures	of	getDistance	are	as	follows.
C/C++	program

int	getDistance(int	i,	int	j);

Pascal	program

function	getDistance(i,	j:	longint):	longint;

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	the	subtask	number

line	2:	n
line	 ,	():	stype[i]	(1	for	type	C	and	2	for	type	D),	location[i].

The	sample	grader	will	print	Correct	if	location[0]	...	location[n-1]	and	stype[0]	...
stype[n-1]	computed	by	your	program	match	the	input	when	findLocation	returns,	or
Incorrect	if	they	do	not	match.

