Problem E. Expected Distance

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
4 seconds
1024 mebibytes

Given are two integer sequences: $\left\{a_{i}\right\}$ of length $N-1$ and $\left\{c_{i}\right\}$ of length N. Let us build a tree T_{N} with N vertices in the following way:

- T_{1} is a tree made up of only vertex 1 .
- For $i>1, T_{i}$ connects vertex i to one of the vertices of T_{i-1}. The probability that vertex j will be chosen is $\frac{a_{j}}{a_{1}+\cdots+a_{i-1}}$. The length of the added edge is then calculated as $c_{i}+c_{j}$.
- When T_{N} is built, the process stops.

You are given Q queries. Each query is a pair of vertices. For each query (u, v), calculate the expected distance between u and v in T_{N}.

Input

The first line of input contains two integers N and Q : the number of vertices and the number of queries, respectively ($2 \leq N, Q \leq 3 \cdot 10^{5}$).
The second line contains $N-1$ integers $a_{1}, a_{2}, \ldots, a_{N-1}\left(1 \leq a_{i} \leq 2000\right)$.
The third line contains N integers $c_{1}, c_{2}, \ldots, c_{N}\left(1 \leq c_{i} \leq 2000\right)$.
Each of the following Q lines describes one query and contains two integers u and v separated by a space: numbers of vertices to find the expected distance $(1 \leq u, v \leq N)$.

Output

It can be proven that each answer is a rational number and can be written in the form $a n s_{i}=\frac{p_{i}}{q_{i}}$, where p_{i} and q_{i} are coprime non-negative integers and $0<q_{i}<10^{9}+7$. For each query, print the integer $\left(p_{i} \cdot q_{i}^{-1}\right) \bmod \left(10^{9}+7\right)$.

Examples

standard input	standard output
$\begin{array}{lllll} \hline 5 & 7 & & & \\ 1 & 1 & 1 & 1 & \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & & & \\ 2 & 5 & & & \\ 4 & 3 & & & \\ 1 & 5 & & & \\ 3 & 3 & & & \\ 4 & 5 & & & \\ 1 & 2 & & & \end{array}$	$\begin{aligned} & \hline 7 \\ & 666666697 \\ & 15 \\ & 666666697 \\ & 0 \\ & 333333366 \\ & 3 \end{aligned}$
$\begin{array}{lllll} \hline 5 & 4 & & \\ 17 & 19 & 23 & 29 \\ 2 & 3 & 5 & 7 & 11 \\ 1 & 2 & & & \\ 3 & 4 & & & \\ 5 & 2 & & & \\ 3 & 5 & & & \end{array}$	$\begin{aligned} & 5 \\ & 927495315 \\ & 106531441 \\ & 450222593 \end{aligned}$

