Problem G. Generate The Array

Input file:
Output file:
Time limit:
Memory limit
standard input
standard output
2 seconds
1024 mebibytes

Consider an array A of length N. You are planning to do several queries: for a segment $[i, j]$ of the array, find the maximum value on that segment of the array. The query for the indices i and j will be done $Q_{i, j}$ times.
But the array is not given, and you are going to build it right now.
For each i from 1 to N, you can select one of K_{i} different values $V_{i, j}$ as the value of A_{i}, and the respective costs of choosing these values are $C_{i, j}$.
After all queries, your score will be the sum of the results of all the interval queries you are planning to do, minus the cost of choosing the values A_{i}. Find the maximum possible score that can be achieved.

Input

First line of the input contains one integer $N(1 \leq N \leq 300)$.
Then N lines follow. The i-th of those lines contains integers from $Q_{i, i}$ to $Q_{i, N}\left(0 \leq Q_{i, j} \leq 999\right)$. The query for the maximum element in the array between A_{i} and A_{j} inclusively shall be performed exactly $Q_{i, j}$ times.
After that, the input describes possible values of A_{i} for each i from 1 to N. The i-th description has the following format:

- The first line contains a positive integer K_{i} : the number of possible values for A_{i}.
- Each of the following K_{i} lines contains two integers $V_{i, j}$ and $C_{i, j}$: a possible value and the cost of picking that value, respectively ($0 \leq V_{i, j} \leq 10^{8}, 0 \leq C_{i, j} \leq 10^{13}$).

It is guaranteed that the sum of K_{i} is at most $3 \cdot 10^{5}$.

Output

Print one integer: the maximum possible score.

Examples

standard input	standard output
5 1 0 2 2 0 0 2 2 0 2 2 2 1 2 0 2 0 27 1 19 2 7 25 1 1 2 8 7 4 18 2 8 7 4 4 2 0 25 4 26	78
$\begin{array}{\|ll} \hline 2 & \\ 1 & 1 \\ 1 & \\ 2 & \\ 1 & 100 \\ 2 & 50 \\ 1 & \\ 1 & 100 \\ \hline \end{array}$	-145

