Problem I. Integer Array Shuffle

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 mebibytes

Given an integer array A of size N, the shuffle operation is defined as follows.

- Initially, you create an empty integer array B.
- Then, while A is not empty, you remove either the leftmost or rightmost element of A, and append the value to the right in B.
- If A is empty, replace A with B and stop.

A

If the shuffle operation is performed as shown in the picture above, the value of the array A is changed as follows:

$$
(34,19,5,36,4,25,12,9) \rightarrow(9,34,19,12,25,4,5,36)
$$

Let A_{i} be the i-th element of array A. When the condition "if $1 \leq i<j \leq N$, then $A_{i} \leq A_{j}$ " is established, it is said that array A increases monotonically.
Write a program that, given an integer array A of size N, calculates the minimum number of shuffle operations required to make the array A monotonically increasing.

Input

The first line of input contains one integer N, the number of elements in array $A\left(1 \leq N \leq 3 \cdot 10^{5}\right)$.
The second line contains N integers A_{1}, \ldots, A_{N} : the initial values of elements of array $A\left(1 \leq A_{i} \leq 10^{9}\right)$.

Output

Output the minimum number of shuffle operations required to make the array A monotonically increasing.

Examples

\quad standard input					standard output
3	2	5			0
6					1
1	5	8	10	3	1

