Problem J. Junkyeom's Contest

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

Junkyeom and his friends Myung and Myeong are planning to hold a programming contest with one gold (first place), two silver (places 2 and 3), and four bronze medals (places 4, 5, 6, 7).

The sponsors gave N gift cards for the contest, i-th of them costs A_{i}. Each medalist shall be awarded exactly one card. Let P_{i} be the prize for the card awarded to the contestant taking i-th place. The distribution is considered fair if the following two inequalities are held:

$$
P_{1} \geq P_{2} \geq P_{3} \geq P_{4} \geq P_{5} \geq P_{6} \geq P_{7}
$$

and

$$
P_{1}<P_{2}+P_{3}<P_{4}+P_{5}+P_{6}+P_{7} .
$$

Given the values A_{i}, find out if a fair distribution of prizes exists. If it does, print the maximum possible sum of P_{i} for a fair distribution.

Input

The first line of input contains one integer N, the number of gift cards $\left(7 \leq N \leq 5 \cdot 10^{5}\right)$.
The second line contains N integers A_{i} : the prizes for the cards $\left(1 \leq A_{i} \leq 2 \cdot 10^{8}\right)$.

Output

If a fair distribution of prizes is impossible, print -1 .
Otherwise print one integer: the maximum possible total prize of the fairly distributed gift cards.

Examples

standard input							standard output		
7	2	3	4	5	6	7		-1	
8									
1	2	3	4	5	6	7	8		35
10								35	
5	5	5	5	5	5	10	5	5	5

