

Problem B. Binomial

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	512 mebibytes

There are people that wont be happy with solving a problem, unless the actual task is obscured by an elaborate and somewhat unnecessary story. If you are one of these people, then this problem is NOT for you.

You are given a sequence of non-negative integers a_1, a_2, \ldots, a_n . You need to find the number of pairs (i, j) such that $1 \le i, j \le n$ and $\binom{a_i}{a_j}$ is odd.

Note that $\binom{n}{k}$ is the number of ways, disregarding order, that k objects can be chosen from among n objects. In particular, if n < k then $\binom{n}{k} = 0$.

Input

The first line of input contains the number of test cases z ($1 \le z \le 10$). The descriptions of the test cases follow. The first line of each test case contains the number of elements in the sequence n ($1 \le n \le 10^6$).

The second line contains n integers a_i $(1 \le a_i \le 10^6)$ – the elements of the sequence.

Output

For each test case, output a single line which contains a single integer – the answer for the problem.

Example

standard input	standard output
2	4
3	9
156	
3	
1 1 1	