Problem K. To argue, or not to argue

Input file: Output file:
standard input Time limit: standard output
Memory limit:
5 seconds
512 mebibytes

You are a director of a very successful theatre. Above all, you like William Shakespeare, even despite his inclination for bloody endings. It was said about some of his plays - like "Hamlet" and "King Lear" - that if they had just one more act, it would be necessary to start murdering people from the first rows of the audience.
Right now, you are close to developing a grudge for Shakespeare for not including this final act. It is because of the $2 k$ people that have just come to your theatre. These are k pairs of celebrities - football players, models, YouTube streamers - who seem not to fully grasp the idea of theatre plays. Each pair is very likely to start a heated argument during the play, disrupting the performance entirely. But there is a solution - it is up to you to assign seats to people, and if a pair is not given adjacent seats, fight is much less likely.
The auditorium consists of n rows with m seats in each one. Some places are already booked by "normal" viewers, whom you do not want to reseat. There are k pairs of celebrities, and to every celebrity you must assign a seat, such that no pair occupies two adjacent spots (we consider two seats adjacent only if they share a common side, i.e. one is next to or behind the other). To cheer yourself up, compute the total number of ways you can do it - it is usually a very large number, so it is enough to compute its remainder modulo $10^{9}+7$. Two assignments are considered distinct if any celebrity is given a different seat. Please note that we distinguish all the celebrities (consider them not identical).

Input

The first line of input contains the number of test cases $z(1 \leq z \leq 100)$. The descriptions of the test cases follow. The first line of each test case contains three positive integers $n, m, k(1 \leq n \cdot m \leq 144,1 \leq k \leq m n / 2)$ - the number of rows, seats in a row, and celebrity pairs. The next n lines describe the rows - each one is a string of characters ' X ' and '.', where '.' denotes a free seat, ' X ' - an occupied (unavailable) seats. You may assume that there are at least $2 k$ free seats.

Output

For each test case, output a single number - the number of possible assignments of seats to celebrities such that no pair is given adjacent seats, modulo $10^{9}+7$.

Examples

Note

In the first example, all ways of assigning seats are presented below (' A ' and ' a ' denote seats assigned to the first pair, ' B ' and ' b ' - to the second):

AB	Ab	ab	aB	BA	bA	ba	Ba
ba	Ba	BA	bA	ab	aB	AB	Ab

