弹跳 (jump)

【题目描述】

跳蚤国有 n 座城市,分别编号为 $1 \sim n$,1 号城市为首都。所有城市分布在一个 $w \times h$ 范围的网格上。每座城市都有一个整数坐标 (x,y) $(1 \le x \le w, 1 \le y \le h)$,不同城市的坐标不相同。

在跳蚤国中共有 m 个弹跳装置,分别编号为 $1 \sim m$,其中 i 号弹跳装置位于 p_i 号城市,并具有参数 t_i, L_i, R_i, D_i, U_i 。利用该弹跳装置,跳蚤可花费 t_i $(t_i > 0)$ 个单位时间,从 p_i 号城市跳至坐标满足 $L_i \leq x \leq R_i, D_i \leq y \leq U_i$ $(1 \leq L_i \leq R_i \leq w, 1 \leq D_i \leq U_i \leq h)$ 的任意一座城市。需要注意的是,一座城市中可能存在多个弹跳装置,也可能没有弹跳装置。

由于城市间距离较远,跳蚤们必须依靠弹跳装置出行。具体来说,一次出行将经过若干座城市,依次经过的城市的编号可用序列 a_0,a_1,\cdots,a_k 表示;在此次出行中,依次利用的弹跳装置的编号可用序列 b_1,b_2,\cdots,b_k 表示。其中每座城市可在序列 $\{a_j\}$ 中出现任意次,每个弹跳装置也可在序列 $\{b_j\}$ 中出现任意次,且满足,对于每个 j $(1 \le j \le k)$,编号为 b_j 的弹跳装置位于城市 a_{j-1} ,且跳蚤能通过该弹跳装置跳至城市 a_j 。我们称这是一次从城市 a_0 到城市 a_k 的出行,其进行了 k 次弹跳,共花费 $\sum_{i=1}^k t_{b_i}$ 个单位时间。

现在跳蚤国王想知道,对于跳蚤国除首都(1号城市)外的每座城市,从首都出发,到达该城市最少需要花费的单位时间。跳蚤国王保证,对每座城市,均存在从首都到它的出行方案。

【输入格式】

从文件 jump.in 中读入数据。

第一行包含四个整数 n, m, w, h, 变量的具体意义见题目描述。

接下来 n 行, 第 i 行包含两个整数 x_i, y_i ,表示 i 号城市的坐标。

接下来 m 行,第 i 行包含六个整数 $p_i, t_i, L_i, R_i, D_i, U_i$,分别表示 i 号弹跳装置所在的城市编号、弹跳所需的时间、可到达的矩形范围。这些整数的具体意义见题目描述。

【输出格式】

输出到文件 jump.out 中。

输出 n-1 行,第 i 行包含一个整数,表示从跳蚤国首都到 i+1 号城市最少需要花费的单位时间。

【样例1输入】

- 5 3 5 5
- 1 1
- 3 1
- 4 1
- 2 2
- 3 3
- 1 123 1 5 1 5
- 1 50 1 5 1 1
- 3 10 2 2 2 2

【样例1输出】

- 50
- 50
- 60
- 123

【样例 2】

见选手目录下的 jump/jump2.in 与 jump/jump2.ans。 这组样例的数据范围为 n=10000 , m=20000 , w=10000 , h=1 。

【样例 3】

见选手目录下的 jump/jump3.in 与 jump/jump3.ans。 这组样例的数据范围为 n = 10000, m = 20000, w = 10000, h = 10000。

【数据范围与提示】

对于所有测试点和样例满足:

 $1 \le n \le 70000$, $1 \le m \le 150000$, $1 \le w, h \le n$, $1 \le t_i \le 10000$ 。每个测试点的具体限制见下表。

测试点编号	$1 \le n \le$	$1 \le m \le$	特殊限制
1 ~ 8	100	100	无
9 ~ 13	50000	100000	每个弹跳装置恰好可达一座城市,且 $L_i = R_i, D_i = U_i$
14 ~ 18	50000	100000	h = 1
19 ~ 22	25000	50000	无
$23 \sim 25$	70000	150000	无

请注意,本题的内存限制为 128MB。