Problem E. Three balls

Input file:
Output file:
Time limit:
Memory limit:
\section*{standard input}
standard output
5 seconds
1024 mebibytes

Central European Regional Contest (CERC) is a contest famous for its interesting and always well-prepared tasks. One of these tasks ${ }^{1}$ was about finding a volume of a sum of three balls. Maybe it was a challenge 10 years ago, but nowadays contestants should not be bothered with so easy and standard problems. Instead of using 3D space, we will use n-dimensional hypercube. Obviously, it requires some definitions.
n-dimensional hypercube has 2^{n} vertices, each of them is represented by a sequence of n coordinates which are either 0 or 1 . For example, 3 -dimensional hypercube has 8 vertices: $000,001,010,011,100,101,110,111$.
Ball with radius r and center s is a subset of vertices of hypercube which have distance at most r to the vertex s. We compute the distance in Manhattan metric which means that vertex p belongs to this ball if and only if coordinates of vertices p and s differ on at most r positions.
Find the number of vertices which belong to the sum of three balls, i.e. number of vertices which belong to at least one of these balls. Print the result modulo $10^{9}+7$.

Input

First line of input contains one integer $n(1 \leq n \leq 10000)$, denoting number of dimensions.
Description of three balls follow. Each description takes one line and i-th line contains integer $r_{i}\left(0 \leq r_{i} \leq n\right)$ and binary word s_{i} consisting of n characters which are either 0 or 1 . These are the radius and the center of the ball, respectively.

Output

You need to print one integer - number of vertices belonging to sum of these three balls, modulo $10^{9}+7$.

Examples

standard input		
3		7
1	000	standard output
0	111	
5		
2	10110	11010
1	00000	

Explanation to first sample test: 3-dimensional hypercube is just a mere cube. Following pictures show which vertices belong to following balls. Grey circle denotes center of a ball.

First ball contains vertices $000,100,010,001$. Second ball contains vertices $100,000,110,101$. Third ball is just a single vertex 111. Sum of these balls contains 7 vertices - all of them except 011.

[^0]
[^0]: ${ }^{1}$ CERC 2009, problem E: http://cepc09.ii.uni.wroc.pl/lost2.pdf

