Problem L. Floyd-Warshall

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	256 mebibytes

Radewoosh has n-vertex directed weighted graph. He needs to determine distances between all pairs of vertices. He decided to use Floyd-Warshall's algorithm for that.
Correct implementation of Floyd-Warshall's algorithm.
$M-n \times n$ matrix. Initially:

$$
M_{i, j}= \begin{cases}0, & \text { if } i=j \\ w_{i, j}, & \text { if there exists an edge from } i \text { to } j \text { with weight } w_{i, j} \\ \infty & \text { otherwise }\end{cases}
$$

```
for }x=1,2,3,\ldots,n\mathrm{ do
    for }y=1,2,3,\ldots,n d
        for z=1,2,3,\ldots,n do
            M}\mp@subsup{M}{y,z}{}\leftarrow\operatorname{min}(\mp@subsup{M}{y,z}{},\mp@subsup{M}{y,x}{}+\mp@subsup{M}{x,z}{}
```

Unfortunately Radewoosh messed up loops order and his algorithm became incorrect!
Incorrect implementation of Floyd-Warshall's algorithm.
$M-n \times n$ matrix defined as above.
for $y=1,2,3, \ldots, n$ do
for $z=1,2,3, \ldots, n$ do for $x=1,2,3, \ldots, n$ do

$$
M_{y, z} \leftarrow \min \left(M_{y, z}, M_{y, x}+M_{x, z}\right)
$$

How many distances determined by Radewoosh's algorithm will be incorrect?

Input

The first line of input contains two integers n and $m(2 \leq n \leq 2000,1 \leq m \leq 3000)$ denoting number of vertices and number of edges in our graph, respectively. Each of the following m lines contains three integers u_{i}, v_{i}, w_{i} $\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}, 1 \leq w_{i} \leq 100000\right)$ denoting that i-th edge goes from vertex u_{i} to vertex v_{i} and has weight w_{i}. No ordered pair $\left(u_{i}, v_{i}\right)$ will be given more than once.

Output

Output should contain one number - number of ordered pairs of vertices which have its distance computed incorrectly by Radewoosh's algorithm.

Example

	standard input		standard output
4	5		1
2	3	4	
3	4	3	
4	2	2	
1	3	1	
1	2	9	

Explanation of sample test: Here we depict the following: initial matrix M, matrix generated by correct algorithm and matrix generated by Radewoosh's implementation. Incorrect version made one mistake $-M_{1,2}$.

$\mathbf{i} \backslash \mathbf{j}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	9	1	∞
$\mathbf{2}$	∞	0	4	∞
$\mathbf{3}$	∞	∞	0	3
$\mathbf{4}$	∞	2	∞	0

$\mathbf{i} \backslash \mathbf{j}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	6	1	4
$\mathbf{2}$	∞	0	4	7
$\mathbf{3}$	∞	5	0	3
$\mathbf{4}$	∞	2	6	0

$\mathbf{i} \backslash \mathbf{j}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	9	1	4
$\mathbf{2}$	∞	0	4	7
$\mathbf{3}$	∞	5	0	3
$\mathbf{4}$	∞	2	6	0

