



# Problem B. Biggest Set Ever

| Input file:   | standard input  |
|---------------|-----------------|
| Output file:  | standard output |
| Time limit:   | 3 seconds       |
| Memory limit: | 512 mebibytes   |

A set of nonnegative integers is *fine* if and only if all numbers in the set are less than T and their sum is equivalent to *rem* modulo n. Your task is to find the number of different fine sets.

### Input

The first line of the input contains space-separated integers n and  $rem \ (0 \le rem < n \le 10^4)$ . The second line of the input contains a single integer  $T \ (1 \le T \le 10^{100\ 000} - 1)$ .

## Output

Print the number of different fine sets. As this number can be **really** large, you should print it modulo prime number 998 244 353.

#### Examples

| standard input | standard output |
|----------------|-----------------|
| 3 2            | 8               |
| 5              |                 |
| 1 0            | 1048576         |
| 20             |                 |

### Note

In the first sample, we can include or exclude numbers 0 and 3 freely, it doesn't change the remainder. From numbers  $\{1, 2, 4\}$  there are two *fine* sets:  $\{2\}$  and  $\{1, 4\}$ . So the answer is  $2 \cdot 2 \cdot 2 = 8$ . In the second sample, any subset of  $\{0, 1, \ldots, 19\}$  is fine, hence, the answer is  $2^{20} = 1048576$ .