Problem B. Biggest Set Ever

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

A set of nonnegative integers is fine if and only if all numbers in the set are less than T and their sum is equivalent to rem modulo n. Your task is to find the number of different fine sets.

Input

The first line of the input contains space-separated integers n and rem ($0 \leq r e m<n \leq 10^{4}$). The second line of the input contains a single integer $T\left(1 \leq T \leq 10^{100000}-1\right)$.

Output

Print the number of different fine sets. As this number can be really large, you should print it modulo prime number 998244353.

Examples

standard input	
3 2	8
1 0	1048576

Note

In the first sample, we can include or exclude numbers 0 and 3 freely, it doesn't change the remainder. From numbers $\{1,2,4\}$ there are two fine sets: $\{2\}$ and $\{1,4\}$. So the answer is $2 \cdot 2 \cdot 2=8$.
In the second sample, any subset of $\{0,1, \ldots, 19\}$ is fine, hence, the answer is $2^{20}=1048576$.

