Problem E. Easy One

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

You have a sequence of digits 1 and 2 . In one step you can:

1. Insert 1 in a place which is to the right of every other 1 (or anywhere if there are no 1 s).
2. Transform any 2 into 1 , if there are no 1 s to the right of this 2 .
3. Delete the rightmost 1 (note that this operation is inverse to the operation 1).
4. Transform the rightmost 1 into 2 (note that this operation is inverse to the operation 2).

For example, you can obtain the following sequences in one step from the sequence 11212122 :

- With operation 1: $112121122,112121212,112121221$.
- With operation 2: $11212112,11212121$.
- With operation 3: 1121222.
- With operation 4: 11212222.

Your task is to calculate the number of ways to transform a sequence of exactly a digits 2 to a sequence of exactly b digits 2 , using exactly t operations.

Input

The only line of the input contains three integers a, b, and $t\left(0 \leq a, b, t \leq 10^{6}\right)$.

Output

Output the number of ways to obtain a sequence of b digits 2 from a sequence of a digits 2 in exactly t steps. As this number can be very large, output it modulo prime number 998244353.

Examples

standard input		standard output
146	4	60

Note

In the first sample you should obtain an empty sequence from an empty sequence in 4 steps. Ways to do this are (ε stands for empty sequence):

$$
\begin{aligned}
& \varepsilon \rightarrow 1 \rightarrow \varepsilon \rightarrow 1 \rightarrow \varepsilon \\
& \varepsilon \rightarrow 1 \rightarrow 11 \rightarrow 1 \rightarrow \varepsilon \\
& \varepsilon \rightarrow 1 \rightarrow 2 \rightarrow 1 \rightarrow \varepsilon
\end{aligned}
$$

