Problem A. Balanced Strings

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	256 mebibytes

You are given an undirected tree with n nodes. The nodes are numbered 1 through n. Each node is labeled with either '(' or ')'. Let $l[u \rightarrow v]$ denote the string obtained by concatenating the labels of the nodes on the simple path from u to v. (Note that the simple path between two nodes is uniquely determined on a tree.)

A balanced string is defined as follows:

- The empty string is balanced.
- For any balanced string s, the string "(" s ")" is balanced.
- For any balanced strings s and t, the string st (the concatenation of s and t) is balanced.
- Any other string is NOT balanced.

Calculate the number of the ordered pairs of the nodes (u, v) such that $l[u \to v]$ is balanced.

Input

The input consists of a single test case. The input starts with an integer n $(2 \le n \le 10^5)$, which is the number of nodes of the tree. The next line contains a string of length n, each character of which is either '(' or ')'. The x-th character of the string represents the label of the node x of the tree. Each of the following n-1 lines contains two integers a_i and b_i $(1 \le a_i, b_i \le n)$, which represents that the node a_i and the node b_i are connected by an edge. The given graph is guaranteed to be a tree.

Output

Display a line containing the number of the ordered pairs (u, v) such that $l[u \rightarrow v]$ is balanced.

Examples

standard input	standard output
2	1
()	
1 2	
4	2
(())	
1 2	
2 3	
3 4	
5	4
()())	
1 2	
2 3	
2 4	
15	