

Problem J. Justice For Everyone

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	512 mebibytes

Suppose you have *n* pairwise different numbers on a desk, denoted by a_1, a_2, \ldots, a_n (order matters). In one turn, you can choose two different indices $i_1 < i_2$ and simultaneously increase a_{i_1} and a_{i_2} by one. The only condition is that the numbers on the desk should be different in every moment. Your task is to find the number of ways to obtain pairwise different numbers b_1, b_2, \ldots, b_n (in exactly this order). As this number can be very large, print it modulo 998 244 353.

Input

The first line of the input contains a single integer n $(1 \le n \le 30)$. The second and the third lines of the input contain n space-separated integers each: the arrays a_i and b_i respectively $(1 \le a_i, b_i \le 200)$. All a_i are guaranteed to be pairwise different, same for b_i .

Output

Print the answer modulo prime number 998 244 353.

Examples

standard input	standard output
3	1
1 2 3	
3 4 5	
3	42
1 2 3	
789	
3	6
1 4 7	
3 6 9	

Note

In the first sample, the only way is to make operations in the order $\{2,3\},\{1,3\},\{1,2\}$. In the third sample, we can make the three operations $\{1,2\},\{2,3\},\{1,3\}$ in any order.