Problem L. Lower Algorithmics

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

You are given a set A of integers from 1 to 1000 inclusive. Your task is to find the number of positive integers that can be represented as a sum of several elements of A, with number of summands being from ℓ to r inclusive. Equal summands are allowed. Note that each number is counted only once, even if it has several such representations.

Input

The first line of the input contains three space-separated integers: n, the number of elements in $A(1 \leq n \leq 1000)$, followed by ℓ and r, the bounds on number of summands ($1 \leq \ell \leq r \leq 2000$). The second line contains n space-separated integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{1}<a_{2}<\ldots<a_{n} \leq 1000\right)$: the elements of the set A in increasing order.

Output

Output the number of integers that are representable as a sum of elements of A, with number of summands being between ℓ and r.

Examples

	standard input		standard output	
2	1	2	4	
1	2		18	
3	1	3		
1	3	10	28	
6	3	5		
1	2	3	4	5

