

Problem H. Dynamic Convex Hull

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

Let's first see a related classical algorithm to help you solve this problem: You will be given n functions $f_1(x), f_2(x), \ldots, f_n(x)$, where $f_i(x) = a_i x + b_i$. When you want to find the minimum value of $f_i(x)$ over all i for a fixed parameter x, you just need to find the corresponding function on the convex hull.

Now you will be given n functions $f_1(x), f_2(x), \ldots, f_n(x)$, where $f_i(x) = (x - a_i)^4 + b_i$.

You need to perform m operations. Each operation has one of the following forms:

- "1 *a b*" $(1 \le a \le 50\,000, 1 \le b \le 10^{18})$: Add a new function $f_{n+1}(x) = (x-a)^4 + b$ and then change *n* into n+1.
- "2 t" $(1 \le t \le n)$: Delete the function $f_t(x)$. It is guaranteed that each function won't be deleted more than once.
- "3 x" $(1 \le x \le 50\,000)$: Query for the minimum value of $f_i(x)$, where $1 \le i \le n$ and the function $f_i(x)$ has not been deleted yet.

Input

The first line contains a single integer T $(1 \le T \le 5)$, the number of test cases. For each test case:

The first line contains two integers n and m $(1 \le n, m \le 100\,000)$ denoting the number of functions and the number of operations.

Each of the following n lines contains two integers a_i and b_i $(1 \le a_i \le 50\,000, 1 \le b_i \le 10^{18})$, denoting the *i*-th function $f_i(x)$.

Each of the next m lines describes an operation in the format shown above.

Output

For each query, print a single line containing an integer denoting the minimum value of $f_i(x)$. When there are no functions, print "-1" instead.

Example

standard input	standard output
1	10
28	116
3 9	82
6 100	-1
3 4	
2 1	
3 4	
1 1 1	
3 4	
2 2	
2 3	
3 4	