Problem H. Dynamic Convex Hull

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
4 seconds
512 mebibytes

Let's first see a related classical algorithm to help you solve this problem: You will be given n functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$, where $f_{i}(x)=a_{i} x+b_{i}$. When you want to find the minimum value of $f_{i}(x)$ over all i for a fixed parameter x, you just need to find the corresponding function on the convex hull.
Now you will be given n functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$, where $f_{i}(x)=\left(x-a_{i}\right)^{4}+b_{i}$.
You need to perform m operations. Each operation has one of the following forms:

- "1 a b " $\left(1 \leq a \leq 50000,1 \leq b \leq 10^{18}\right)$: Add a new function $f_{n+1}(x)=(x-a)^{4}+b$ and then change n into $n+1$.
- " $2 t$ " $(1 \leq t \leq n)$: Delete the function $f_{t}(x)$. It is guaranteed that each function won't be deleted more than once.
- "3 x " $(1 \leq x \leq 50000)$: Query for the minimum value of $f_{i}(x)$, where $1 \leq i \leq n$ and the function $f_{i}(x)$ has not been deleted yet.

Input

The first line contains a single integer $T(1 \leq T \leq 5)$, the number of test cases. For each test case:
The first line contains two integers n and $m(1 \leq n, m \leq 100000)$ denoting the number of functions and the number of operations.
Each of the following n lines contains two integers a_{i} and $b_{i}\left(1 \leq a_{i} \leq 50000,1 \leq b_{i} \leq 10^{18}\right)$, denoting the i-th function $f_{i}(x)$.
Each of the next m lines describes an operation in the format shown above.

Output

For each query, print a single line containing an integer denoting the minimum value of $f_{i}(x)$. When there are no functions, print " -1 " instead.

Example

	standard input		standard output
1		10	
2	8	116	
3	9	82	
6	100	-1	
3	4		
2	1		
3	4		
1	1	1	
3	4		
2	2		
2	3		
3	4		

