

Problem I. It's All Squares

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

One day when Little Q woke up, he found himself being inside a 2D pixel world. The world is a grid with $n \times m$ square cells. Little Q can only walk along the sides of these cells, which means he can stay at a point (x, y) if and only if $0 \le x \le n$ and $0 \le y \le m$, where x and y are integers. There is a number written at the center of each cell, number $w_{i,j}$ $(1 \le i \le n, 1 \le j \le m)$ is written at the point (i - 0.5, j - 0.5).

Little Q had no idea about how to escape from the pixel world, so he started wandering. You will be given q queries, each query consists of two integers (x, y) and a string S, denoting the route of Little Q. Initially, Little Q will stand at (x, y), then he will do |S| steps of movements $S_1, S_2, \ldots, S_{|S|}$ one by one. Here is what he will do for each type of movement:

- "L" : Move from (x, y) to (x 1, y).
- "R" : Move from (x, y) to (x + 1, y).
- "D" : Move from (x, y) to (x, y 1).
- "U": Move from (x, y) to (x, y+1).

It is guaranteed that Little Q will never walk outside of the pixel world, and the route will form a simple polygon. For each query, please tell Little Q how many distinct numbers there are inside the polygon formed by the route.

Fortunately, after solving this problem, Little Q woke up on his bed. The pixel world had just been a dream!

Input

The first line contains a single integer T $(1 \le T \le 10)$, the number of test cases. For each test case:

The first line contains three integers n, m, q $(1 \le n, m \le 400, 1 \le q \le 200\,000)$ denoting the dimensions of the pixel world and the number of queries.

Each of the following n lines contains m integers, the *i*-th line contains m integers $w_{i,1}, w_{i,2}, \ldots, w_{i,m}$ $(1 \le w_{i,j} \le n \times m)$ denoting the number written in each cell. (Note that you will have to rotate this representation if you want "U" to actually mean "up", etc.)

Each of the following q lines contains two integers x and y $(0 \le x \le n, 0 \le y \le m)$ and a non-empty string $S (S_i \in \{L, R, D, U\})$ describing each query.

It is guaranteed that $\sum |S| \le 4\,000\,000$.

Output

For each query, output a line with a single integer: how many distinct numbers are inside the polygon.

Example

standard input	standard output
1	6
3 3 2	2
1 2 3	
1 1 2	
789	
O O RRRUUULLLDDD	
O O RRUULLDD	