Problem I. It's All Squares

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
4 seconds
512 mebibytes

One day when Little Q woke up, he found himself being inside a 2D pixel world. The world is a grid with $n \times m$ square cells. Little Q can only walk along the sides of these cells, which means he can stay at a point (x, y) if and only if $0 \leq x \leq n$ and $0 \leq y \leq m$, where x and y are integers. There is a number written at the center of each cell, number $w_{i, j}(1 \leq i \leq n, 1 \leq j \leq m)$ is written at the point $(i-0.5, j-0.5)$.
Little Q had no idea about how to escape from the pixel world, so he started wandering. You will be given q queries, each query consists of two integers (x, y) and a string S, denoting the route of Little Q . Initially, Little Q will stand at (x, y), then he will do $|S|$ steps of movements $S_{1}, S_{2}, \ldots, S_{|S|}$ one by one. Here is what he will do for each type of movement:

- "L" : Move from (x, y) to $(x-1, y)$.
- "R" : Move from (x, y) to $(x+1, y)$.
- "D" : Move from (x, y) to $(x, y-1)$.
- "U" : Move from (x, y) to $(x, y+1)$.

It is guaranteed that Little Q will never walk outside of the pixel world, and the route will form a simple polygon. For each query, please tell Little Q how many distinct numbers there are inside the polygon formed by the route.
Fortunately, after solving this problem, Little Q woke up on his bed. The pixel world had just been a dream!

Input

The first line contains a single integer $T(1 \leq T \leq 10)$, the number of test cases. For each test case:
The first line contains three integers $n, m, q(1 \leq n, m \leq 400,1 \leq q \leq 200000)$ denoting the dimensions of the pixel world and the number of queries.
Each of the following n lines contains m integers, the i-th line contains m integers $w_{i, 1}, w_{i, 2}, \ldots, w_{i, m}$ $\left(1 \leq w_{i, j} \leq n \times m\right)$ denoting the number written in each cell. (Note that you will have to rotate this representation if you want "U" to actually mean "up", etc.)
Each of the following q lines contains two integers x and $y(0 \leq x \leq n, 0 \leq y \leq m)$ and a non-empty string $S\left(S_{i} \in\{\mathrm{~L}, \mathrm{R}, \mathrm{D}, \mathrm{U}\}\right)$ describing each query.
It is guaranteed that $\sum|S| \leq 4000000$.

Output

For each query, output a line with a single integer: how many distinct numbers are inside the polygon.

Example

	standard input		standard output
1		6	
3	3	2	2
1	2	3	
1	1	2	
7	8	9	
0	0	RRRUUULLLDDD	
0	0	RRUULLDD	

