

Problem J. Walking Plan

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

There are *n* intersections in Bytetown, connected with *m* one-way streets. These intersections are labeled by $1, 2, \ldots, n$. Little Q likes sport walking very much, he plans to walk for *q* days. On the *i*-th day, Little Q plans to start walking at the s_i -th intersection, move along a street at least k_i times, and finally arrive to the t_i -th intersection. Note that k_i is the required number of *moves*, not *streets*: it is allowed to use any street more than once.

Little Q's smartphone will record his walking route. Little Q cares more about statistics than about staying healthy. So he wants to minimize the total walking length on each day. Please write a program to help him find the best route.

Input

The first line contains a single integer T $(1 \le T \le 10)$, the number of test cases. For each test case:

The first line contains two integers n and m ($2 \le n \le 50$, $1 \le m \le 10\,000$) denoting the number of intersections and one-way streets.

Each of the next *m* lines contains three integers u_i , v_i , w_i $(1 \le u_i, v_i \le n, u_i \ne v_i, 1 \le w_i \le 10\,000)$ denoting a one-way street from intersection u_i to intersection v_i with length w_i .

In the next line, there is an integer q $(1 \le q \le 100\,000)$ denoting the number of days.

Each of the next q lines contains three integers s_i , t_i , k_i $(1 \le s_i, t_i \le n, 1 \le k_i \le 10\,000)$ describing the walking plan.

Output

For each walking plan, print a line containing a single integer: the minimum total walking length. If there is no solution, please print "-1".

Example

standard input	standard output
2	111
3 3	1
1 2 1	11
2 3 10	-1
3 1 100	
3	
1 1 1	
1 2 1	
1 3 1	
2 1	
1 2 1	
1	
2 1 1	