

Problem D. Fibonacci Partition

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	256 mebibytes

The sequence of Fibonacci numbers is defined as:

$$F_{n} = \begin{cases} 1 & n = 1 \\ 2 & n = 2 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

The first few elements of the sequence are $1, 2, 3, 5, 8, 13, 21, 34, \ldots$

For a given positive integer n, let partition(n) be the maximum value of m such that n can be expressed as a sum of m distinct Fibonacci numbers. For example, partition(1) = partition(2) = 1, partition(3) = partition(4) = partition(5) = partition(7) = 2, partition(6) = partition(8) = 3.

Chiaki has an integer X which initially equals to 0. She will perform some operations on X: the *i*-th operation will add $a_i \cdot F_{b_i}$ to X.

After each operation, Chiaki would like to know the value of partition(X). It is guaranteed that, after each operation, X will be a positive integer.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains an integer $n \ (1 \le n \le 5 \cdot 10^4)$: the number of operations.

Each of the next n lines contains two integers a_i and b_i $(1 \le |a_i|, b_i \le 10^9)$.

It is guaranteed that the sum of n for all test cases will not exceed $5 \cdot 10^4$.

Output

For each test case, output n integers: the *i*-th integer denotes the value of partition(X) after the *i*-th operation.

Example

standard input	standard output
1	1
10	1
1 1	2
1 1	2
1 2	3
1 3	3
1 4	4
1 5	4
1 6	5
1 7	6
18	
-2 5	

Note

The value of X after each operation in the sample: 1, 2, 4, 7, 12, 20, 33, 54, 88, 72.