Problem D. Fibonacci Partition

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	256 mebibytes

The sequence of Fibonacci numbers is defined as:

$$
F_{n}= \begin{cases}1 & n=1 \\ 2 & n=2 \\ F_{n-1}+F_{n-2} & \text { otherwise }\end{cases}
$$

The first few elements of the sequence are $1,2,3,5,8,13,21,34, \ldots$
For a given positive integer n, let $\operatorname{partition}(n)$ be the maximum value of m such that n can be expressed as a sum of m distinct Fibonacci numbers. For example, $\operatorname{partition}(1)=\operatorname{partition}(2)=1$, $\operatorname{partition}(3)=\operatorname{partition}(4)=\operatorname{partition}(5)=\operatorname{partition}(7)=2, \operatorname{partition}(6)=\operatorname{partition}(8)=3$.
Chiaki has an integer X which initially equals to 0 . She will perform some operations on X : the i-th operation will add $a_{i} \cdot F_{b_{i}}$ to X.
After each operation, Chiaki would like to know the value of $\operatorname{partition}(X)$. It is guaranteed that, after each operation, X will be a positive integer.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 5 \cdot 10^{4}\right)$: the number of operations.
Each of the next n lines contains two integers a_{i} and $b_{i}\left(1 \leq\left|a_{i}\right|, b_{i} \leq 10^{9}\right)$.
It is guaranteed that the sum of n for all test cases will not exceed $5 \cdot 10^{4}$.

Output

For each test case, output n integers: the i-th integer denotes the value of $\operatorname{partition}(X)$ after the i-th operation.

Example

	standard input	standard output
1		1
10	1	
1	1	2
1	2	2
1	3	3
1	4	3
1	5	4
1	6	4
1	7	5
1	8	6
-2	5	

Note

The value of X after each operation in the sample: $1,2,4,7,12,20,33,54,88,72$.

