

Problem H. Partition Number

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	256 mebibytes

You are given an integer set $A = \{a_1, a_2, \dots, a_n\}$. Please calculate the number of solutions for equation $x_1 + x_2 + \ldots + x_k = m$, where x_i are positive integers, $x_1 \le x_2 \le \ldots \le x_k$ and $x_i \notin A$.

As the answer may be very large, you are only asked to calculate it modulo $(10^9 + 7)$.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n and m $(1 \le n \le 500, n \le m \le 3 \cdot 10^5)$.

The second line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le m, a_i \ne a_j \text{ for all } i \ne j)$.

It is guaranteed that the sum of n over all test cases does not exceed 500.

Output

For each test cases, output an integer denoting the answer.

Example

standard input	standard output
5	2
1 4	3
1	4
1 4	1
2	0
1 4	
3	
3 4	
1 2 3	
4 4	
1 2 3 4	

Note

There are 5 solutions for m = 4 if the constraints set A is empty. They are:

1	=	1 + 1 + 1 + 1
	=	1 + 1 + 2
	=	1 + 3
	=	2 + 2
	=	4