Problem I. Stirling Number

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
9 seconds
256 mebibytes

The Stirling number of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]$ is the number of permutations of n elements with exactly k disjoint cycles. The well-known recurrence relation is defined as follows:

$$
\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]=n\left[\begin{array}{l}
n \\
k
\end{array}\right]+\left[\begin{array}{c}
n \\
k-1
\end{array}\right]
$$

for $k>0$, with the initial conditions

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=1 \quad \text { and } \quad\left[\begin{array}{l}
n \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
n
\end{array}\right]=0
$$

for $n>0$.
Given four integers, n, l, r, and p, find the value of

$$
\left(\sum_{k=l}^{r}\left[\begin{array}{l}
n \\
k
\end{array}\right]\right) \bmod p
$$

where p is prime.

Input

The first line contains four integers, n, l, r, and $p\left(1 \leq n \leq 10^{18}, 0 \leq l \leq r \leq n, 2 \leq p \leq 10^{6}, p\right.$ is prime $)$.

Output

Output an integer denoting the answer.

Examples

standard input	standard output
4145	4
65529	15
1000685975999983	482808

