

Problem K. Anti-hash Test

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

It is well-known that the following string $s(n) = s_0 s_1 \dots s_{2^n-1}$ can challenge almost every solution that uses polynomial hashes modulo 2^{64} :

$$s_i = \begin{cases} \text{``a'', popcount}(i) \mod 2 = 0 \\ \text{``b'', popcount}(i) \mod 2 = 1 \end{cases}$$

where popcount(i) means the number of ones in binary representation of number *i*.

Given a string u and an integer n, find the number of occurrences of u in string s(n) and the number of distinct strings v which have the same number of occurrences in string s(n). As both the numbers may be very large, you are only asked to calculate them modulo $10^9 + 7$.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains an integer $n \ (1 \le n \le 10^{18})$.

The second line contains a string u $(1 \le |u| \le \min(10^6, 2^n))$ consisting only of letters "a" and "b".

It is guaranteed that the sum of |u| over all test cases does not exceed 10^6 .

Output

For each test case, if the string u does not appear in string s(n), you should simply output -1. Otherwise, output two integers denoting the number of occurrences of u in string s(n) modulo $10^9 + 7$ and the number of distinct strings v which have the same number of occurrences in string s(n) modulo $10^9 + 7$.

Example

standard input	standard output
4	512 2
10	171 4
a	1 344
10	-1
abba	
5	
abbabaabbaababbabaabbaabbabaab	
20	
ababab	