Problem K. Anti-hash Test

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

It is well-known that the following string $s(n)=s_{0} s_{1} \ldots s_{2^{n}-1}$ can challenge almost every solution that uses polynomial hashes modulo 2^{64} :

$$
s_{i}= \begin{cases}" \mathrm{a} ", & \operatorname{popcount}(i) \bmod 2=0 \\ " \mathrm{~b} ", & \operatorname{popcount}(i) \bmod 2=1\end{cases}
$$

where popcount (i) means the number of ones in binary representation of number i.
Given a string u and an integer n, find the number of occurrences of u in string $s(n)$ and the number of distinct strings v which have the same number of occurrences in string $s(n)$. As both the numbers may be very large, you are only asked to calculate them modulo $10^{9}+7$.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains an integer $n\left(1 \leq n \leq 10^{18}\right)$.
The second line contains a string $u\left(1 \leq|u| \leq \min \left(10^{6}, 2^{n}\right)\right)$ consisting only of letters "a" and "b".
It is guaranteed that the sum of $|u|$ over all test cases does not exceed 10^{6}.

Output

For each test case, if the string u does not appear in string $s(n)$, you should simply output -1 . Otherwise, output two integers denoting the the number of occurrences of u in string $s(n)$ modulo $10^{9}+7$ and the number of distinct strings v which have the same number of occurrences in string $s(n)$ modulo $10^{9}+7$.

Example

standard input	standard output	
4	512 2	
10	1714	
a	1344	
10	-1	
abba		
5		
abbabaabbaababbabaababbaabbabaab		
20		
ababab		

