Problem L. Tokens on the Tree

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Chiaki has a tree with n vertices, labeled by integers from 1 to n. For each vertex in the tree, there is a white token or a black token or no token at all. There are exactly w white tokens and exactly black tokens. Also, for each pair of vertices with the same color of tokens, there exists a path between them such that every vertex on the path contains a token of the same color.

Chiaki would like to perform the following operations:

1. Choose a vertex u with a token.
2. Choose a path $p_{1}, p_{2}, \ldots, p_{k}$ such that $p_{1}=u$, all vertices $p_{1}, p_{2}, \ldots, p_{k-1}$ contain a token of the same color, and there's no token in p_{k}.
3. Move the token in p_{1} to p_{k}. Now there's no token in p_{1} and p_{k} contains a token.

For two initial configurations of tokens S and T, if Chiaki could perform the above operations several (zero or more) times to make S become T, then S and T are considered equivalent.

Let $f(w, b)$ be the number of equivalence classes (that is, the maximum number of configurations that no two are equivalent). Chiaki would like to know the value of

$$
\left(\sum_{w=1}^{n-1} \sum_{b=1}^{n-w} w \cdot b \cdot f(w, b)\right) \bmod \left(10^{9}+7\right)
$$

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n\left(2 \leq n \leq 2 \cdot 10^{5}\right)$: the number of vertices in the tree.
The second line contains $n-1$ integers $p_{2}, p_{3}, \ldots, p_{n}\left(1 \leq p_{i}<i\right)$, where p_{i} means there is an edge between vertex i and vertex p_{i}.
It is guaranteed that the sum of n of all test cases will not exceed $2 \cdot 10^{5}$.

Output

For each test case, output an integer denoting the value of

$$
\left(\sum_{w=1}^{n-1} \sum_{b=1}^{n-w} w \cdot b \cdot f(w, b)\right) \bmod \left(10^{9}+7\right)
$$

Example

standard input	standard output
2	71
5	989
1233	
10	
123436382	

Note

For the first sample, the values of $f(w, b)$ for each w and b are:
$f(1,1)=1, f(1,2)=2, f(1,3)=3, f(1,4)=3$,
$f(2,1)=2, f(2,2)=2, f(2,3)=1$,
$f(3,1)=3, f(3,2)=1$,
$f(4,1)=3$.

