Problem I. Midpoint

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	256 mebibytes

One day, you found L + M + N points on a 2D plane, which you named $A_1, \ldots, A_L, B_1, \ldots, B_M, C_1, \ldots, C_N$. Note that two or more points of them can be at the same coordinate. These were named after the following properties:

- the points A_1, \ldots, A_L were located on a single straight line,
- the points B_1, \ldots, B_M were located on a single straight line, and
- the points C_1, \ldots, C_N were located on a single straight line.

Now, you are interested in a triplet (i, j, k) such that C_k is the midpoint between A_i and B_j . Your task is counting such triplets.

Input

The first line contains three space-separated positive integers L, M, and N $(1 \le L, M, N \le 10^5)$. The next L lines describe A. The *i*-th of them contains two space-separated integers representing the *x*-coordinate and the *y*-coordinate of A_i . The next M lines describe B. The *j*-th of them contains two space-separated integers representing the *x*-coordinate and the *y*-coordinate of B_j . The next N lines describe C. The *k*-th of them contains two space-separated integers representing the *x*-coordinate and the *y*-coordinate of B_j . The next N lines describe C. The *k*-th of them contains two space-separated integers representing the *x*-coordinate of C_k .

It is guaranteed that the absolute values of all the coordinates do not exceed 10^5 .

Output

Print the number of the triplets which fulfill the constraint.

Examples

standard input	standard output
2 2 3	3
0 0	
2 0	
0 0	
0 2	
0 0	
1 1	
1 1	
4 4 4	8
3 5	
0 4	
6 6	
97	
8 2	
11 3	
2 0	
5 1	
4 3	
74	
10 5	
1 2	
4 4 4	3
0 0	
3 2	
6 4	
96	
7 14	
9 10	
10 8	
13 2	
4 2	
54	
6 6	
8 10	