Problem I. Midpoint

Input file: standard input
Output file: standard output
Time limit: $\quad 10$ seconds
Memory limit: $\quad 256$ mebibytes
One day, you found $L+M+N$ points on a 2D plane, which you named $A_{1}, \ldots, A_{L}, B_{1}, \ldots, B_{M}$, C_{1}, \ldots, C_{N}. Note that two or more points of them can be at the same coordinate. These were named after the following properties:

- the points A_{1}, \ldots, A_{L} were located on a single straight line,
- the points B_{1}, \ldots, B_{M} were located on a single straight line, and
- the points C_{1}, \ldots, C_{N} were located on a single straight line.

Now, you are interested in a triplet (i, j, k) such that C_{k} is the midpoint between A_{i} and B_{j}. Your task is counting such triplets.

Input

The first line contains three space-separated positive integers L, M, and $N\left(1 \leq L, M, N \leq 10^{5}\right)$. The next L lines describe A. The i-th of them contains two space-separated integers representing the x-coordinate and the y-coordinate of A_{i}. The next M lines describe B. The j-th of them contains two space-separated integers representing the x-coordinate and the y-coordinate of B_{j}. The next N lines describe C. The k-th of them contains two space-separated integers representing the x-coordinate and the y-coordinate of C_{k}. It is guaranteed that the absolute values of all the coordinates do not exceed 10^{5}.

Output

Print the number of the triplets which fulfill the constraint.

Examples

standard input	standard output
$\begin{array}{lll} 2 & 2 & 3 \\ 0 & 0 \\ 2 & 0 \\ 0 & 0 \\ 0 & 2 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	3
$\begin{array}{lll} \hline 4 & 4 & 4 \\ 3 & 5 \\ 0 & 4 \\ 6 & 6 \\ 9 & 7 \\ 8 & 2 \\ 11 & 3 \\ 2 & 0 \\ 5 & 1 \\ 4 & 3 \\ 7 & 4 \\ 10 & 5 \\ 1 & 2 \end{array}$	8
$\begin{array}{lll} \hline 4 & 4 & 4 \\ 0 & 0 \\ 3 & 2 \\ 6 & 4 \\ 9 & 6 \\ 7 & 14 \\ 9 & 10 \\ 10 & 8 \\ 13 & 2 \\ 4 & 2 \\ 5 & 4 \\ 6 & 6 \\ 8 & 10 \end{array}$	3

