

Problem N. Cactus

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	512 mebibytes

A *cactus graph* is a connected undirected graph without self-loops and multiple edges in which each edge belongs to at most one simple cycle.

Given is a cactus graph G with N vertices, numbered from 1 to N, and M edges. The *i*-th edge connects vertices a_i and b_i , and its cost is c_i .

Let the cost of a simple path on graph G be bitwise XOR of the costs of all the edges on that path.

Answer Q queries of the form " $x_i y_i k_i$ ": consider the costs of all simple paths connecting vertices x_i and y_i , remove duplicate values, sort the values in ascending order, and take k_i -th element. If the number of these values is less than k_i , answer -1.

Input

The first line of the input contains two integers N and M: the number of vertices and the number of edges in the graph $(2 \le N \le 10^5, N - 1 \le M \le 2 \cdot 10^5)$.

Each of the next M lines describes one edge and contains three integers a_i , b_i and c_i $(1 \le a_i, b_i \le N, a_i \ne b_i, 0 \le c_i < 2^{30})$.

Then follows a line containing an integer Q: the number of queries $(1 \le q \le 2 \cdot 10^5)$.

Each of the next Q lines describes one query and contains three integers x_i , y_i and k_i $(1 \le x_i, y_i \le N, x_i \ne y_i, 1 \le k_i \le 2^{30})$.

It is guaranteed that the graph given in the input is a cactus graph.

Output

For each query, print one integer on a separate line: the answer to that query.

Example

standard input	standard output
4 4	2
1 2 2	8
1 3 8	6
2 3 0	-1
1 4 6	
4	
2 1 1	
1 2 2	
4 1 1	
4 3 2020	