Problem A. Mango

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Mango is a cat that lives next door. The name comes from the fact that its color is similar to the color of mango juice. I don't know if Mango likes this name.

Like most cats, Mango is cute. Mango, which many people like, sometimes becomes the subject of humorous jokes such as "The Mango looks delicious" or "That's a cat, not a mango." Recently, Mango has become the hero of a meme about generation of the following recursive sentences.
Let's say we have the initial string M_{0} and the rule string S. For any positive integer i, M_{i} is defined as the string in which each " $\$$ " character is replaced with the string M_{i-1}.
It is easy to construct the first few such strings. For example, if we say that M_{0} is "That's a cat, not a mango", and S is "That's a "\$", not a "\$"", then M_{0}, M_{1}, and M_{2} look as follows:

- M_{0} : "That's a cat, not a mango".
- M_{1} : "That's a "That's a cat, not a mango", not a "That's a cat, not a mango"".
- M_{2} : "That's a "That's a "That's a cat, not a mango", not a "That's a cat, not a mango"", not a "That's a "That's a cat, not a mango", not a "That's a cat, not a mango""".

Not only M_{3} and M_{4}, but also M_{1000} can be constructed using the same principle. However, even M_{5} is already quite long. Still, I wonder, for the string M_{k} and several pairs (a, b), what is the substring of M_{k} from the a-th to the b-th character, inclusive. Write a program that finds the answers to these queries.

Input

The first line contains the initial string M_{0}.
The second contains the rule string S.
The input strings satisfy the following conditions:

- The length of each string is not less than 1 and not more than 10^{5}.
- All characters in each string have an ASCII code value between 33 and 126, inclusive. Note that whitespace is not included.
- M_{0} does not contain any " $\$$ " (ASCII code 36) characters.
- S contains at least one " $\$$ " (ASCII code 36) character.

The third line contains two integers k and $q\left(1 \leq k \leq 10^{5}, 1 \leq q \leq 10^{5}\right)$.
Each of the next q lines contains a query: two integers a_{i} and $b_{i}\left(1 \leq a_{i} \leq b_{i} \leq 10^{18}, b_{i}-a_{i}<10^{5}\right)$. It is guaranteed that b_{i} does not exceed the length of M_{k}.

Output

Print q lines.
On line i, print a total of $b_{i}-a_{i}+1$ characters: the substring of M_{k} from a_{i}-th character to b_{i}-th character inclusive.

It is guaranteed that, in the correct answer, the total number of characters printed (excluding line breaks) will not exceed $5 \cdot 10^{5}$.

Examples

standard input	standard output
```It's_a_cat,_not_a_mango It's_"$",_not_"$" 16 120 18 35 4961 2940 4150 5 5```	```It's_"It's_a_cat,_no _not_a_mango",_not _not_a_mango" o",_not_"It' s_a_cat,_n```
$\begin{aligned} & \hline \text { Ad_finitum } \\ & \$ \\ & 1000004 \\ & 1 \quad 10 \\ & 1 \\ & 4 \\ & 4 \\ & 10 \\ & 5 \end{aligned} \quad 8$	```Ad_finitum Ad finitum init```
```THE_END $_IS_NEVER_$_IS_NEVER_$ 88 5 17 3256 3257 6770667710 111011 111017 999999999999999968 9999999999999999993```	

