Problem D. Non-Decreasing Subarray Game

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
256 mebibytes

Yuto and Platina are going to play a Non-Decreasing Subarray Game. The game is played on an array A of length N.
Yuto first says an integer, and after that, Platina says an integer. The numbers selected by the players should be in the interval from L to R, inclusive. Let the two selected integers be a and b, ordered in such a way that $a \leq b$. Then the score obtained in the game is the number of pairs (i, j) such that $a \leq i \leq j \leq b$ and the interval $[i, j]$ forms a non-decreasing subarray in array A.
We say that $[i, j]$ forms a non-decreasing subarray when, for each x and y such that $i \leq x \leq y \leq j$, it is true that $A[x] \leq A[y]$.
Yuto wants the score to be minimized, and Platina wants the score to be maximized. This game is so much fun that we are going to play it T times. All games will use the same array A, but different games might use different values of L and R.
Assuming that both players are playing optimally, find the number of points they will get in each of the games played.

Input

The first line contains two integers N and $T(1 \leq N, T \leq 500000)$: the length of the array and the number of games played, respectively.
In the second line, the array values $A[1], A[2], A[3], \ldots, A[N]$ are given $\left(1 \leq A[i] \leq 10^{9}\right)$.
Each of the next T lines describes a game by two positive integers L_{i} and $R_{i}\left(1 \leq L_{i} \leq R_{i} \leq N\right)$: the values of L and R to use for this game.

Output

For each game, print the score in this game on a separate line.

Example

standard input	standard output
85	4
710319552	1
15	4
22	7
58	3
18	
35	

