Problem K. Determinant

Input file:	standard input
Output file:	standard output
Time limit:	8 seconds
Memory limit:	512 mebibytes

The determinant is one of the important objects covered in linear algebra.
For a natural number n, S_{n} is the set of all permutations: functions from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$ such that all n values $f(1), f(2), \ldots, f(n)$ are different.
For $f \in S_{n}, \operatorname{inv}(f)$ is the number of inversions in permutation f : the number of pairs (i, j) such that $i<j$ but $f(i)>f(j)$.
Consider matrix A of size $N \times N$. Let $a_{i, j}$ be the element at row i and column j. The determinant of A is:

$$
\operatorname{det}(A)=\sum_{f \in S_{n}}(-1)^{i n v(f)} \prod_{i=1}^{n} a_{i, f(i)}
$$

We have an $N \times N$ matrix A where each element is an integer. Let's run Q of the following queries.
When the integer x is given, print the value of the determinant of $A-x I$, where I is an $N \times N$ unit matrix.

Since the value can be too large, print the answer modulo prime number 998244353.

Input

The first line contains two integers N and $Q(1 \leq N \leq 500,1 \leq Q \leq 250000)$.
The next N lines describe matrix A. The i-th of these lines contains N integers, and the j-th of these integers represents $a_{i, j}\left(0 \leq a_{i, j}<998244353\right)$.
Then Q lines follow, each containing one query: an integer $x(0 \leq x<998244353)$.

Output

For each query, print the answer on a separate line.

Example

standard input	standard output
36	407470402495260110
245	
638	
163	
1095831	

