Problem A. Avg

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Find a sequence of steps of the following kind (if it exists) that would make all elements of any array of real numbers $a_{1}, a_{2}, \ldots, a_{n}$ equal:

- pick k distinct indices $b_{1}, b_{2}, \ldots, b_{k}\left(1 \leq b_{i} \leq n\right)$ and change the values of $a_{b_{1}}, a_{b_{2}}, \ldots, a_{b_{k}}$ to their arithmetic mean (that is, $\left.\frac{1}{k}\left(a_{b_{1}}+a_{b_{2}}+\ldots+a_{b_{k}}\right)\right)$ simultaneously.

Input

The only line contains two integers n and $k(2 \leq k \leq n \leq 1000$; n is divisible by $k)$.

Output

If a required sequence of steps doesn't exist, display a single integer -1 .
Otherwise, display the number of steps in your sequence $t\left(1 \leq k t \leq 10^{6}\right)$, followed by t step descriptions. Each step description must consist of k distinct integers $b_{1}, b_{2}, \ldots, b_{k}\left(1 \leq b_{i} \leq n\right)$.
It can be shown that if a valid sequence of steps exists, a sequence satisfying $k t \leq 10^{6}$ exists as well.

Examples

	standard input	
42	4	standard output
	1	2
	3	4
	1	3
	24	
63	-1	

