

Problem D. Div

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

How many integers x > 0 exist such that $c_0 x^{a_0} + c_1 x^{a_1} + \ldots + c_{n-1} x^{a_{n-1}}$ is divisible by $x^0 + x^1 + \ldots + x^{m-1}$?

Input

The first line contains a single integer t $(1 \le t \le 10^5)$, denoting the number of test cases.

Each test case is described with two integers n and m $(1 \le n \le 10^5; 1 \le m \le 10^9)$, followed by n lines containing a pair of integers c_i and a_i each $(|c_i| = 1; 0 \le a_i \le 10^9)$.

The sum of n over all test cases does not exceed 10^5 .

Output

For each test case, display the required number, or -1 if it is infinite.

Example

standard input	standard output
3	1
5 2	-1
1 0	2
1 0	
1 0	
1 0	
1 0	
5 3	
-1 2	
-1 1	
-1 0	
1 1	
-1 1	
12 3	
-1 0	
-1 7	
1 8	
1 8	
-1 4	
-1 6	
1 8	
1 2	
1 5	
1 2	
-1 9	
1 5	

Note

In the first test case, x = 4 is the only solution. In the second test case, the quotient is -1 for any x > 0. In the third test case, the solutions are x = 2 and x = 9.